歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類(lèi) > DOC文檔下載  

《一元二次方程》全章教案.doc

  • 資源ID:1253421       資源大?。?span id="g74w99r" class="font-tahoma">732KB        全文頁(yè)數(shù):44頁(yè)
  • 資源格式: DOC        下載積分:32積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要32積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫(xiě)的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

《一元二次方程》全章教案.doc

_一元二次方程全章教案 單元要點(diǎn)分析 教材內(nèi)容 1本單元教學(xué)的主要內(nèi)容 一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題 2本單元在教材中的地位與作用 一元二次方程是在學(xué)習(xí)一元一次方程、二元一次方程、分式方程等基礎(chǔ)之上學(xué)習(xí)的,它也是一種數(shù)學(xué)建模的方法學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,是學(xué)好高中數(shù)學(xué)的奠基工程應(yīng)該說(shuō),一元二次方程是本書(shū)的重點(diǎn)內(nèi)容 教學(xué)目標(biāo) 1知識(shí)與技能 了解一元二次方程及有關(guān)概念;掌握通過(guò)配方法、公式法、因式分解法降次解一元二次方程;掌握依據(jù)實(shí)際問(wèn)題建立一元二次方程的數(shù)學(xué)模型的方法;應(yīng)用熟練掌握以上知識(shí)解決問(wèn)題 2過(guò)程與方法 (1)通過(guò)豐富的實(shí)例,讓學(xué)生合作探討,老師點(diǎn)評(píng)分析,建立數(shù)學(xué)模型根據(jù)數(shù)學(xué)模型恰如其分地給出一元二次方程的概念 (2)結(jié)合八冊(cè)上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項(xiàng)等 (3)通過(guò)掌握缺一次項(xiàng)的一元二次方程的解法直接開(kāi)方法,導(dǎo)入用配方法解一元二次方程,又通過(guò)大量的練習(xí)鞏固配方法解一元二次方程 (4)通過(guò)用已學(xué)的配方法解ax2+bx+c=0(a0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0 (5)通過(guò)復(fù)習(xí)八年級(jí)上冊(cè)整式的第5節(jié)因式分解進(jìn)行知識(shí)遷移,解決用因式分解法解一元二次方程,并用練習(xí)鞏固它 (6)提出問(wèn)題、分析問(wèn)題,建立一元二次方程的數(shù)學(xué)模型,并用該模型解決實(shí)際問(wèn)題 3情感、態(tài)度與價(jià)值觀 經(jīng)歷由事實(shí)問(wèn)題中抽象出一元二次方程等有關(guān)概念的過(guò)程,使同學(xué)們體會(huì)到通過(guò)一元二次方程也是刻畫(huà)現(xiàn)實(shí)世界中的數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型;經(jīng)歷用配方法、公式法、分解因式法解一元一次方程的過(guò)程,使同學(xué)們體會(huì)到轉(zhuǎn)化等數(shù)學(xué)思想;經(jīng)歷設(shè)置豐富的問(wèn)題情景,使學(xué)生體會(huì)到建立數(shù)學(xué)模型解決實(shí)際問(wèn)題的過(guò)程,從而更好地理解方程的意義和作用,激發(fā)學(xué)生的學(xué)習(xí)興趣 教學(xué)重點(diǎn) 1一元二次方程及其它有關(guān)的概念 2用配方法、公式法、因式分解法降次解一元二次方程 3利用實(shí)際問(wèn)題建立一元二次方程的數(shù)學(xué)模型,并解決這個(gè)問(wèn)題 教學(xué)難點(diǎn) 1一元二次方程配方法解題 2用公式法解一元二次方程時(shí)的討論 3建立一元二次方程實(shí)際問(wèn)題的數(shù)學(xué)模型;方程解與實(shí)際問(wèn)題解的區(qū)別 教學(xué)關(guān)鍵 1分析實(shí)際問(wèn)題如何建立一元二次方程的數(shù)學(xué)模型 2用配方法解一元二次方程的步驟 3解一元二次方程公式法的推導(dǎo) 課時(shí)劃分 本單元教學(xué)時(shí)間約需16課時(shí),具體分配如下: 221 一元二次方程 2課時(shí) 222 降次解一元二次方程 7課時(shí)223 實(shí)際問(wèn)題與一元二次方程 5課時(shí)發(fā)現(xiàn)一元二次方程根與系數(shù)的關(guān)系 2課時(shí) 第1課時(shí) 221 一元二次方程 教學(xué)內(nèi)容 一元二次方程概念及一元二次方程一般式及有關(guān)概念 教學(xué)目標(biāo) 了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡(jiǎn)單題目 1通過(guò)設(shè)置問(wèn)題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義 2一元二次方程的一般形式及其有關(guān)概念 3解決一些概念性的題目 4通過(guò)生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問(wèn)題來(lái)激發(fā)學(xué)生的學(xué)習(xí)熱情 重難點(diǎn)關(guān)鍵 1重點(diǎn):一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問(wèn)題 2難點(diǎn)關(guān)鍵:通過(guò)提出問(wèn)題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念 教學(xué)過(guò)程 一、復(fù)習(xí)引入 學(xué)生活動(dòng):列方程 問(wèn)題(1)古算趣題:“執(zhí)竿進(jìn)屋”笨人執(zhí)竿要進(jìn)屋,無(wú)奈門(mén)框攔住竹,橫多四尺豎多二,沒(méi)法急得放聲哭。有個(gè)鄰居聰明者,教他斜竿對(duì)兩角,笨伯依言試一試,不多不少剛抵足。借問(wèn)竿長(zhǎng)多少數(shù),誰(shuí)人算出我佩服。如果假設(shè)門(mén)的高為x尺,那么,這個(gè)門(mén)的寬為_(kāi)尺,長(zhǎng)為_(kāi)尺,根據(jù)題意,得_ 整理、化簡(jiǎn),得:_問(wèn)題(2)如圖,如果,那么點(diǎn)C叫做線段AB的黃金分割點(diǎn) 如果假設(shè)AB=1,AC=x,那么BC=_,根據(jù)題意,得:_ 整理得:_ 問(wèn)題(3)有一面積為54m2的長(zhǎng)方形,將它的一邊剪短5m,另一邊剪短2m,恰好變成一個(gè)正方形,那么這個(gè)正方形的邊長(zhǎng)是多少? 如果假設(shè)剪后的正方形邊長(zhǎng)為x,那么原來(lái)長(zhǎng)方形長(zhǎng)是_,寬是_,根據(jù)題意,得:_ 整理,得:_ 老師點(diǎn)評(píng)并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理 二、探索新知 學(xué)生活動(dòng):請(qǐng)口答下面問(wèn)題 (1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)? (2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次? (3)有等號(hào)嗎?還是與多項(xiàng)式一樣只有式子? 老師點(diǎn)評(píng):(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程 因此,像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程 一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過(guò)整理,都能化成如下形式ax2+bx+c=0(a0)這種形式叫做一元二次方程的一般形式 一個(gè)一元二次方程經(jīng)過(guò)整理化成ax2+bx+c=0(a0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng) 例1將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫(xiě)出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng) 分析:一元二次方程的一般形式是ax2+bx+c=0(a0)因此,方程3x(x-1)=5(x+2)必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)等解:略注意:二次項(xiàng)、二次項(xiàng)系數(shù)、一次項(xiàng)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)都包括前面的符號(hào). 例2(學(xué)生活動(dòng):請(qǐng)二至三位同學(xué)上臺(tái)演練) 將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫(xiě)出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng) 分析:通過(guò)完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式 解:略 三、鞏固練習(xí)教材P32 練習(xí)1、2補(bǔ)充練習(xí):判斷下列方程是否為一元二次方程? (1)3x+2=5y-3 (2) x2=4 (3) 3x2-=0 (4) x2-4=(x+2) 2 (5) ax2+bx+c=0 四、應(yīng)用拓展 例3求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程 分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可 證明:m2-8m+17=(m-4)2+1 (m-4)20 (m-4)2+1>0,即(m-4)2+10不論m取何值,該方程都是一元二次方程 練習(xí): 1.方程(2a4)x22bx+a=0, 在什么條件下此方程為一元二次方程?在什么條件下此方程為一元一次方程? 2.當(dāng)m為何值時(shí),方程(m+1)x4m-4+27mx+5=0是關(guān)于的一元二次方程 五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng)) 本節(jié)課要掌握: (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用 六、布置作業(yè) 1教材P34 習(xí)題221 1(2)(4)(6)、2 2選用作業(yè)設(shè)計(jì)補(bǔ)充:若x2-2xm-1+3=0是關(guān)于x的一元二次方程,求m的值 作業(yè)設(shè)計(jì) 一、選擇題 1在下列方程中,一元二次方程的個(gè)數(shù)是( ) 3x2+7=0 ax2+bx+c=0 (x-2)(x+5)=x2-1 3x2-=0 A1個(gè) B2個(gè) C3個(gè) D4個(gè) 2方程2x2=3(x-6)化為一般形式后二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別為( ) A2,3,-6 B2,-3,18 C2,-3,6 D2,3,6 3px2-3x+p2-q=0是關(guān)于x的一元二次方程,則( ) Ap=1 Bp>0 Cp0 Dp為任意實(shí)數(shù) 二、填空題 1方程3x2-3=2x+1的二次項(xiàng)系數(shù)為_(kāi),一次項(xiàng)系數(shù)為_(kāi),常數(shù)項(xiàng)為_(kāi) 2一元二次方程的一般形式是_ 3關(guān)于x的方程(a-1)x2+3x=0是一元二次方程,則a的取值范圍是_ 三、綜合提高題 1a滿足什么條件時(shí),關(guān)于x的方程a(x2+x)=x-(x+1)是一元二次方程? 2關(guān)于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程嗎?為什么? 3一塊矩形鐵片,面積為1m2,長(zhǎng)比寬多3m,求鐵片的長(zhǎng),小明在做這道題時(shí),是這樣做的: 設(shè)鐵片的長(zhǎng)為x,列出的方程為x(x-3)=1,整理得:x2-3x-1=0小明列出方程后,想知道鐵片的長(zhǎng)到底是多少,下面是他的探索過(guò)程:第一步:x1234x2-3x-1-3-3 所以,_<x<_第二步: x3.13.23.33.4x2-3x-1-0.96-0.36 所以,_<x<_ (1)請(qǐng)你幫小明填完空格,完成他未完成的部分; (2)通過(guò)以上探索,估計(jì)出矩形鐵片的整數(shù)部分為_(kāi),十分位為_(kāi)課后反思第2課時(shí) 221 一元二次方程 教學(xué)內(nèi)容 1一元二次方程根的概念; 2根據(jù)題意判定一個(gè)數(shù)是否是一元二次方程的根及其利用它們解決一些具體題目 教學(xué)目標(biāo) 了解一元二次方程根的概念,會(huì)判定一個(gè)數(shù)是否是一個(gè)一元二次方程的根及利用它們解決一些具體問(wèn)題 提出問(wèn)題,根據(jù)問(wèn)題列出方程,化為一元二次方程的一般形式,列式求解;由解給出根的概念;再由根的概念判定一個(gè)數(shù)是否是根同時(shí)應(yīng)用以上的幾個(gè)知識(shí)點(diǎn)解決一些具體問(wèn)題 重難點(diǎn)關(guān)鍵 1重點(diǎn):判定一個(gè)數(shù)是否是方程的根; 2難點(diǎn)關(guān)鍵:由實(shí)際問(wèn)題列出的一元二次方程解出根后還要考慮這些根是否確定是實(shí)際問(wèn)題的根教學(xué)過(guò)程一、復(fù)習(xí)引入 學(xué)生活動(dòng):請(qǐng)同學(xué)獨(dú)立完成下列問(wèn)題問(wèn)題1前面有關(guān)“執(zhí)竿進(jìn)屋”的問(wèn)題中,我們列得方程x2-8x+20=0列表:x1234567891011x2-8x+20 問(wèn)題2前面有關(guān)長(zhǎng)方形的面積的問(wèn)題中,我們列得方程x2+7x-44=0即x2+7x=44x123456x2+7x列表: 老師點(diǎn)評(píng)(略) 二、探索新知 提問(wèn):(1)問(wèn)題1中一元二次方程的解是多少?問(wèn)題2中一元二次方程的解是多少? (2)如果拋開(kāi)實(shí)際問(wèn)題,問(wèn)題2中還有其它解嗎? 老師點(diǎn)評(píng):(1)問(wèn)題1中x=2與x=10是x2-8x+20=0的解,問(wèn)題2中,x=4是x2+7x-44=0的解.(2)如果拋開(kāi)實(shí)際問(wèn)題,問(wèn)題2中還有x=-11的解 一元二次方程的解也叫做一元二次方程的根 回過(guò)頭來(lái)看:x2-8x+20=0有兩個(gè)根,一個(gè)是2,另一個(gè)是10,都滿足題意;但是,問(wèn)題2中的x=-11的根不滿足題意因此,由實(shí)際問(wèn)題列出方程并解得的根,并不一定是實(shí)際問(wèn)題的根,還要考慮這些根是否確實(shí)是實(shí)際問(wèn)題的解 例1下面哪些數(shù)是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4 分析:要判定一個(gè)數(shù)是否是方程的根,只要把其代入等式,使等式兩邊相等即可解:將上面的這些數(shù)代入后,只有-2和-3滿足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的兩根例2.若x=1是關(guān)于x的一元二次方程a x2+bx+c=0(a0)的一個(gè)根,求代數(shù)式2007(a+b+c)的值練習(xí):關(guān)于x的一元二次方程(a-1) x2+x+a 2-1=0的一個(gè)根為0,則求a的值點(diǎn)撥:如果一個(gè)數(shù)是方程的根,那么把該數(shù)代入方程,一定能使左右兩邊相等,這種解決問(wèn)題的思維方法經(jīng)常用到,同學(xué)們要深刻理解. 例3你能用以前所學(xué)的知識(shí)求出下列方程的根嗎? (1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0 分析:要求出方程的根,就是要求出滿足等式的數(shù),可用直接觀察結(jié)合平方根的意義 解:略 三、鞏固練習(xí) 教材P33 思考題 練習(xí)1、2 四、應(yīng)用拓展 例3要剪一塊面積為150cm2的長(zhǎng)方形鐵片,使它的長(zhǎng)比寬多5cm,這塊鐵片應(yīng)該怎樣剪? 設(shè)長(zhǎng)為xcm,則寬為(x-5)cm 列方程x(x-5)=150,即x2-5x-150=0 請(qǐng)根據(jù)列方程回答以下問(wèn)題: (1)x可能小于5嗎?可能等于10嗎?說(shuō)說(shuō)你的理由(2)完成下表: x1011121314151617x2-5x-150 (3)你知道鐵片的長(zhǎng)x是多少嗎? 分析:x2-5x-150=0與上面兩道例題明顯不同,不能用平方根的意義和八年級(jí)上冊(cè)的整式中的分解因式的方法去求根,但是我們可以用一種新的方法“夾逼”方法求出該方程的根 解:(1)x不可能小于5理由:如果x<5,則寬(x-5)<0,不合題意 x不可能等于10理由:如果x=10,則面積x2-5x-150=-100,也不可能(2) x 10 11 12 1314151617x2-5x-150-100-84-66-46-2402654 (3)鐵片長(zhǎng)x=15cm 五、歸納小結(jié)(學(xué)生歸納,老師點(diǎn)評(píng)) 本節(jié)課應(yīng)掌握: (1)一元二次方程根的概念; (2)要會(huì)判斷一個(gè)數(shù)是否是一元二次方程的根; (3)要會(huì)用一些方法求一元二次方程的根(“夾逼”方法; 平方根的意義) 六、布置作業(yè) 1教材P34 復(fù)習(xí)鞏固3、4 綜合運(yùn)用5、6、7 拓廣探索8、9 2選用課時(shí)作業(yè)設(shè)計(jì) 作業(yè)設(shè)計(jì) 一、選擇題 1方程x(x-1)=2的兩根為( ) Ax1=0,x2=1 Bx1=0,x2=-1 Cx1=1,x2=2 Dx1=-1,x2=2 2方程ax(x-b)+(b-x)=0的根是( ) Ax1=b,x2=a Bx1=b,x2= Cx1=a,x2= Dx1=a2,x2=b2 3已知x=-1是方程ax2+bx+c=0的根(b0),則=( ) A1 B-1 C0 D2 二、填空題 1如果x2-81=0,那么x2-81=0的兩個(gè)根分別是x1=_,x2=_ 2已知方程5x2+mx-6=0的一個(gè)根是x=3,則m的值為_(kāi) 3方程(x+1)2+x(x+1)=0,那么方程的根x1=_;x2=_ 三、綜合提高題 1如果x=1是方程ax2+bx+3=0的一個(gè)根,求(a-b)2+4ab的值 2如果關(guān)于x的一元二次方程ax2+bx+c=0(a0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個(gè)根 3在一次數(shù)學(xué)課外活動(dòng)中,小明給全班同學(xué)演示了一個(gè)有趣的變形,即在()2-2x+1=0,令=y,則有y2-2y+1=0,根據(jù)上述變形數(shù)學(xué)思想(換元法),解決小明給出的問(wèn)題:在(x2-1)2+(x2-1)=0中,求出(x2-1)2+(x2-1)=0的根課后反思第3課時(shí) 22.2.1 直接開(kāi)平方法 教學(xué)內(nèi)容 運(yùn)用直接開(kāi)平方法,即根據(jù)平方根的意義把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程 教學(xué)目標(biāo) 理解一元二次方程“降次”轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問(wèn)題 提出問(wèn)題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程 重難點(diǎn)關(guān)鍵 1重點(diǎn):運(yùn)用開(kāi)平方法解形如(x+m)2=n(n0)的方程;領(lǐng)會(huì)降次轉(zhuǎn)化的數(shù)學(xué)思想 2難點(diǎn)與關(guān)鍵:通過(guò)根據(jù)平方根的意義解形如x2=n,知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n0)的方程 教學(xué)過(guò)程 一、復(fù)習(xí)引入 學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題 問(wèn)題1填空(1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)2;(3)x2+px+_=(x+_)2問(wèn)題1:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)()2 問(wèn)題2:目前我們都學(xué)過(guò)哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程于一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過(guò)哪些降次的方法? 二、探索新知 上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開(kāi)平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開(kāi)平方的方法求解呢? (學(xué)生分組討論) 老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3 即2t+1=3,2t+1=-3 方程的兩根為t1=1,t2=-2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1 解:(2)由已知,得:(x+3)2=2 直接開(kāi)平方,得:x+3=± 即x+3=,x+3=- 所以,方程的兩根x1=-3+,x2=-3- 例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m,求每年人均住房面積增長(zhǎng)率 分析:設(shè)每年人均住房面積增長(zhǎng)率為x一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2 解:設(shè)每年人均住房面積增長(zhǎng)率為x, 則:10(1+x)2=14.4 (1+x)2=1.44 直接開(kāi)平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2 所以,方程的兩根是x1=0.2=20%,x2=-2.2 因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去 所以,每年人均住房面積增長(zhǎng)率應(yīng)為20% (學(xué)生小結(jié))老師引導(dǎo)提問(wèn):解一元二次方程,它們的共同特點(diǎn)是什么? 共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程我們把這種思想稱(chēng)為“降次轉(zhuǎn)化思想” 三、鞏固練習(xí)教材P36 練習(xí)補(bǔ)充題:如圖,在ABC中,B=90°,點(diǎn)P從點(diǎn)B開(kāi)始,沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始,沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),如果AB=6cm,BC=12cm,P、Q都從B點(diǎn)同時(shí)出發(fā),幾秒后PBQ的面積等于8cm2? 老師點(diǎn)評(píng): 問(wèn)題2:設(shè)x秒后PBQ的面積等于8cm2 則PB=x,BQ=2x 依題意,得:x·2x=8 x2=8 根據(jù)平方根的意義,得x=±2 即x1=2,x2=-2 可以驗(yàn)證,2和-2都是方程x·2x=8的兩根,但是移動(dòng)時(shí)間不能是負(fù)值所以2秒后PBQ的面積等于8cm2 四、應(yīng)用拓展 例3某公司一月份營(yíng)業(yè)額為1萬(wàn)元,第一季度總營(yíng)業(yè)額為3.31萬(wàn)元,求該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率是多少? 分析:設(shè)該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率為x,那么二月份的營(yíng)業(yè)額就應(yīng)該是(1+x),三月份的營(yíng)業(yè)額是在二月份的基礎(chǔ)上再增長(zhǎng)的,應(yīng)是(1+x)2 解:設(shè)該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率為x 那么1+(1+x)+(1+x)2=3.31 把(1+x)當(dāng)成一個(gè)數(shù),配方得: (1+x+)2=2.56,即(x+)2=256 x+=±1.6,即x+=1.6,x+=-1.6 方程的根為x1=10%,x2=-3.1 因?yàn)樵鲩L(zhǎng)率為正數(shù), 所以該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率為10% 五、歸納小結(jié) 本節(jié)課應(yīng)掌握: 由應(yīng)用直接開(kāi)平方法解形如x2=p(p0),那么x=±轉(zhuǎn)化為應(yīng)用直接開(kāi)平方法解形如(mx+n)2=p(p0),那么mx+n=±,達(dá)到降次轉(zhuǎn)化之目的若p0則方程無(wú)解 六、布置作業(yè) 1教材P45 復(fù)習(xí)鞏固1、2 2選用作業(yè)設(shè)計(jì):一、選擇題 1若x2-4x+p=(x+q)2,那么p、q的值分別是( ) Ap=4,q=2 Bp=4,q=-2 Cp=-4,q=2 Dp=-4,q=-2 2方程3x2+9=0的根為( ) A3 B-3 C±3 D無(wú)實(shí)數(shù)根 3用配方法解方程x2-x+1=0正確的解法是( ) A(x-)2=,x=± B(x-)2=-,原方程無(wú)解 C(x-)2=,x1=+,x2= D(x-)2=1,x1=,x2=- 二、填空題 1若8x2-16=0,則x的值是_ 2如果方程2(x-3)2=72,那么,這個(gè)一元二次方程的兩根是_ 3如果a、b為實(shí)數(shù),滿足+b2-12b+36=0,那么ab的值是_ 三、綜合提高題 1解關(guān)于x的方程(x+m)2=n 2某農(nóng)場(chǎng)要建一個(gè)長(zhǎng)方形的養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻(墻長(zhǎng)25m),另三邊用木欄圍成,木欄長(zhǎng)40m (1)雞場(chǎng)的面積能達(dá)到180m2嗎?能達(dá)到200m嗎? (2)雞場(chǎng)的面積能達(dá)到210m2嗎? 3在一次手工制作中,某同學(xué)準(zhǔn)備了一根長(zhǎng)4米的鐵絲,由于需要,現(xiàn)在要制成一個(gè)矩形方框,并且要使面積盡可能大,你能幫助這名同學(xué)制成方框,并說(shuō)明你制作的理由嗎?課后反思第4課時(shí) 22.2.2 配方法(1) 教學(xué)內(nèi)容 間接即通過(guò)變形運(yùn)用開(kāi)平方法降次解方程 教學(xué)目標(biāo) 理解間接即通過(guò)變形運(yùn)用開(kāi)平方法降次解方程,并能熟練應(yīng)用它解決一些具體問(wèn)題 通過(guò)復(fù)習(xí)可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面兩種形式的解題步驟 重難點(diǎn)關(guān)鍵 1重點(diǎn):講清“直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟 2難點(diǎn)與關(guān)鍵:不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧 教學(xué)過(guò)程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請(qǐng)同學(xué)們解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7 老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得x=±或mx+n=±(p0) 如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9嗎? 二、探索新知 列出下面問(wèn)題的方程并回答: (1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與剛才解題的方程有什么不同呢? (2)能否直接用上面三個(gè)方程的解法呢? 問(wèn)題2:要使一塊矩形場(chǎng)地的長(zhǎng)比寬多6m,并且面積為16m2,場(chǎng)地的長(zhǎng)和寬各是多少? (1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有 (2)不能 既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來(lái)講如何轉(zhuǎn)化: x2+6x-16=0移項(xiàng)x2+6x=16兩邊加(6/2)2使左邊配成x2+2bx+b2的形式 x2+6x+32=16+9左邊寫(xiě)成平方形式 (x+3)2=25 降次x+3=±5 即 x+3=5或x+3=-5 解一次方程x1=2,x2= -8可以驗(yàn)證:x1=2,x2= -8都是方程的根,但場(chǎng)地的寬不能使負(fù)值,所以場(chǎng)地的寬為2m,常為8m.像上面的解題方法,通過(guò)配成完全平方形式來(lái)解一元二次方程的方法,叫配方法可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解 例1用配方法解下列關(guān)于x的方程 (1)x2-8x+1=0 (2)x2-2x-=0 分析:(1)顯然方程的左邊不是一個(gè)完全平方式,因此,要按前面的方法化為完全平方式;(2)同上 解:略 三、鞏固練習(xí) 教材P38 討論改為課堂練習(xí),并說(shuō)明理由 教材P39 練習(xí)1 2(1)、(2) 四、應(yīng)用拓展例3如圖,在RtACB中,C=90°,AC=8m,CB=6m,點(diǎn)P、Q同時(shí)由A,B兩點(diǎn)出發(fā)分別沿AC、BC方向向點(diǎn)C勻速移動(dòng),它們的速度都是1m/s,幾秒后PCQ的面積為RtACB面積的一半 分析:設(shè)x秒后PCQ的面積為RtABC面積的一半,PCQ也是直角三角形根據(jù)已知列出等式 解:設(shè)x秒后PCQ的面積為RtACB面積的一半 根據(jù)題意,得:(8-x)(6-x)=××8×6 整理,得:x2-14x+24=0 (x-7)2=25即x1=12,x2=2 x1=12,x2=2都是原方程的根,但x1=12不合題意,舍去 所以2秒后PCQ的面積為RtACB面積的一半 五、歸納小結(jié) 本節(jié)課應(yīng)掌握: 左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程 六、布置作業(yè) 1教材P45 復(fù)習(xí)鞏固23(1)(2) 2選用作業(yè)設(shè)計(jì) 一、選擇題 1將二次三項(xiàng)式x2-4x+1配方后得( ) A(x-2)2+3 B(x-2)2-3 C(x+2)2+3 D(x+2)2-3 2已知x2-8x+15=0,左邊化成含有x的完全平方形式,其中正確的是( ) Ax2-8x+(-4)2=31 Bx2-8x+(-4)2=1 Cx2+8x+42=1 Dx2-4x+4=-11 3如果mx2+2(3-2m)x+3m-2=0(m0)的左邊是一個(gè)關(guān)于x的完全平方式,則m等于( ) A1 B-1 C1或9 D-1或9 二、填空題 1方程x2+4x-5=0的解是_ 2代數(shù)式的值為0,則x的值為_(kāi) 3已知(x+y)(x+y+2)-8=0,求x+y的值,若設(shè)x+y=z,則原方程可變?yōu)開(kāi),所以求出z的值即為x+y的值,所以x+y的值為_(kāi) 三、綜合提高題 1已知三角形兩邊長(zhǎng)分別為2和4,第三邊是方程x2-4x+3=0的解,求這個(gè)三角形的周長(zhǎng) 2如果x2-4x+y2+6y+13=0,求(xy)z的值 3新華商場(chǎng)銷(xiāo)售某種冰箱,每臺(tái)進(jìn)貨價(jià)為2500元,市場(chǎng)調(diào)研表明:當(dāng)銷(xiāo)售價(jià)為2900元時(shí),平均每天能售出8臺(tái);而當(dāng)銷(xiāo)售價(jià)每降50元時(shí),平均每天就能多售出4臺(tái),商場(chǎng)要想使這種冰箱的銷(xiāo)售利潤(rùn)平均每天達(dá)5000元,每臺(tái)冰箱的定價(jià)應(yīng)為多少元?課后反思第5課時(shí) 22.2.2 配方法(2) 教學(xué)內(nèi)容 給出配方法的概念,然后運(yùn)用配方法解一元二次方程 教學(xué)目標(biāo) 了解配方法的概念,掌握運(yùn)用配方法解一元二次方程的步驟 通過(guò)復(fù)習(xí)上一節(jié)課的解題方法,給出配方法的概念,然后運(yùn)用配方法解決一些具體題目 重難點(diǎn)關(guān)鍵 1重點(diǎn):講清配方法的解題步驟 2難點(diǎn)與關(guān)鍵:把常數(shù)項(xiàng)移到方程右邊后,兩邊加上的常數(shù)是一次項(xiàng)系數(shù)一半的平方 教具、學(xué)具準(zhǔn)備 小黑板 教學(xué)過(guò)程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))解下列方程: (1)x2-4x+7=0 (2)2x2-8x+1=0 老師點(diǎn)評(píng):我們上一節(jié)課,已經(jīng)學(xué)習(xí)了如何解左邊不含有x的完全平方形式,不可以直接開(kāi)方降次解方程的轉(zhuǎn)化問(wèn)題,那么這兩道題也可以用上面的方法進(jìn)行解題 解:略. (2)與(1)有何關(guān)聯(lián)? 二、探索新知討論:配方法屆一元二次方程的一般步驟:(1)現(xiàn)將已知方程化為一般形式;(2)化二次項(xiàng)系數(shù)為1;(3)常數(shù)項(xiàng)移到右邊;(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;(5)變形為(x+p)2=q的形式,如果q0,方程的根是x=-p±q;如果q0,方程無(wú)實(shí)根 例1解下列方程 (1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0 分析:我們已經(jīng)介紹了配方法,因此,我們解這些方程就可以用配方法來(lái)完成,即配一個(gè)含有x的完全平方解:略 三、鞏固練習(xí) 教材P39 練習(xí) 2(3)、(4)、(5)、(6) 四、應(yīng)用拓展 例2用配方法解方程(6x+7)2(3x+4)(x+1)=6 分析:因?yàn)槿绻归_(kāi)(6x+7)2,那么方程就變得很復(fù)雜,如果把(6x+7)看為一個(gè)數(shù)y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就轉(zhuǎn)化為y的方程,像這樣的轉(zhuǎn)化,我們把它稱(chēng)為換元法 解:設(shè)6x+7=y 則3x+4=y+,x+1=y- 依題意,得:y2(y+)(y-)=6 去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72, y4-y2=72 (y2-)2= y2-=± y2=9或y2=-8(舍) y=±3 當(dāng)y=3時(shí),6x+7=3 6x=-4 x=- 當(dāng)y=-3時(shí),6x+7=-3 6x=-10 x=- 所以,原方程的根為x1=-,x2=-例3求證:無(wú)論y取何值時(shí),代數(shù)式-3 y2+8y-6恒小于0. 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:1配方法的概念及用配方法解一元二次方程的步驟2配方法是解一元二次方程的通法,它重要性,不僅僅表現(xiàn)在一元二次方程的解法中,也可通過(guò)配方,利用非負(fù)數(shù)的性質(zhì)判斷代數(shù)式的正負(fù)性(如例3)在今后學(xué)習(xí)二次函數(shù),到高中學(xué)習(xí)二次曲線時(shí),還將經(jīng)常用到。 六、布置作業(yè) 1.教材P45 復(fù)習(xí)鞏固3(3)(4)補(bǔ)充:(1)已知x2+y2+z2-2x+4y-6z+14=0,則求x+y+z的值(2)求證:無(wú)論x、y取任何實(shí)數(shù),多項(xiàng)式x2+y2-2x-4y+16的值總是正數(shù)2.作業(yè)設(shè)計(jì)一、選擇題 1配方法解方程2x2-x-2=0應(yīng)把它先變形為( ) A(x-)2= B(x-)2=0 C(x-)2= D(x-)2=2下列方程中,一定有實(shí)數(shù)解的是( ) Ax2+1=0 B(2x+1)2=0 C(2x+1)2+3=0 D(x-a)2=a 3已知x2+y2+z2-2x+4y-6z+14=0,則x+y+z的值是( ) A1 B2 C-1 D-2 二、填空題 1如果x2+4x-5=0,則x=_ 2無(wú)論x、y取任何實(shí)數(shù),多項(xiàng)式x2+y2-2x-4y+16的值總是_數(shù) 3如果16(x-y)2+40(x-y)+25=0,那么x與y的關(guān)系是_ 三、綜合提高題 1用配方法解方程 (1)9y2-18y-4=0 (2)x2+3=2x 2已知:x2+4x+y2-6y+13=0,求的值 3某商場(chǎng)銷(xiāo)售一批名牌襯衫,平均每天可售出20件,每件贏利40元,為了擴(kuò)大銷(xiāo)售,增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)降價(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)一元,商場(chǎng)平均每天可多售出2件 若商場(chǎng)平均每天贏利1200元,每件襯衫應(yīng)降價(jià)多少元? 每件襯衫降價(jià)多少元時(shí),商場(chǎng)平均每天贏利最多?請(qǐng)你設(shè)計(jì)銷(xiāo)售方案課后反思第6課時(shí) 22.2.3 公式法 教學(xué)內(nèi)容 1一元二次方程求根公式的推導(dǎo)過(guò)程; 2公式法的概念; 3利用公式法解一元二次方程 教學(xué)目標(biāo) 理解一元二次方程求根公式的推導(dǎo)過(guò)程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程 復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過(guò)程,引入ax2+bx+c=0(a0)的求根公式的推導(dǎo)公式,并應(yīng)用公式法解一元二次方程 重難點(diǎn)關(guān)鍵 1重點(diǎn):求根公式的推導(dǎo)和公式法的應(yīng)用 2難點(diǎn)與關(guān)鍵:一元二次方程求根公式法的推導(dǎo) 教學(xué)過(guò)程一、 復(fù)習(xí)引入1 前面我們學(xué)習(xí)過(guò)解一元二次方程的“直接開(kāi)平方法”,比如,方程(1)x2=4 (2)(x-2) 2=7提問(wèn)1 這種解法的(理論)依據(jù)是什么?提問(wèn)2 這種解法的局限性是什么?(只對(duì)那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實(shí)施于一般形式的二次方程。) 2面對(duì)這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開(kāi)平方”的形式。) (學(xué)生活動(dòng))用配方法解方程 2x2+3=7x (老師點(diǎn)評(píng))略 總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點(diǎn)評(píng))(1)現(xiàn)將已知方程化為一般形式;(2)化二次項(xiàng)系數(shù)為1;(3)常數(shù)項(xiàng)移到右邊;(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;(5)變形為(x+p)2=q的形式,如果q0,方程的根是x=-p±q;如果q0,方程無(wú)實(shí)根二、探索新知用配方法解方程 (1) ax27x+3 =0 (2)a x2+bx+3=0 (3)如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步驟求出它們的兩根,請(qǐng)同學(xué)獨(dú)立完成下面這個(gè)問(wèn)題 問(wèn)題:已知ax2+bx+c=0(a0),試推導(dǎo)它的兩個(gè)根x1=,x2=(這個(gè)方程一定有解嗎?什么情況下有解?) 分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ)、b、c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去 解:移項(xiàng),得:ax2+bx=-c 二次項(xiàng)系數(shù)化為1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= 4a2>0,4a20, 當(dāng)b2-4ac0時(shí)0 (x+)2=()2 直接開(kāi)平方,得:x+=± 即x= x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系數(shù)a、b、c而定,因此: (1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac0時(shí),將a、b、c代入式子x=就得到方程的根(公式所出現(xiàn)的運(yùn)算,恰好包括了所學(xué)過(guò)的六中運(yùn)算,加、減、乘、除、乘方、開(kāi)方,這體現(xiàn)了公式的統(tǒng)一性與和諧性。) (2)這個(gè)式子叫做一元二次方程的求根公式(3)利用求根公式解一元二次方程的方法叫公式法公式的理解 (4)由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根 例1用公式法解下列方程 (1)2x2-x-1=0 (2)x2+1.5=-3x (3) x2-x+ =0 (4)4x2-3x+2=0 分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可 補(bǔ):(5)(x-2)(3x-5)=0 三、鞏固練習(xí) 教材P42 練習(xí)1(1)、(3)、(5)或(2) 、(4) 、(6) 四、應(yīng)用拓展 例2某數(shù)學(xué)興趣小組對(duì)關(guān)于x的方程(m+1)+(m-2)x-1=0提出了下列問(wèn)題 (1)若使方程為一元二次方程,m是否存在?若存在,求出m并解此方程 (2)若使方程為一元二次方程m是否存在?若存在,請(qǐng)求出 你能解決這個(gè)問(wèn)題嗎? 分析:能(1)要使它為一元二次方程,必須滿足m2+1=2,同時(shí)還要滿足(m+1)0 (2)要使它為一元一次方程,必須滿足:或或 解:(1)存在根據(jù)題意,得:m2+1=2 m2=1 m=±1 當(dāng)m=1時(shí),m+1=1+1=20 當(dāng)m=-1時(shí),m+1=-1+1=0(不合題意,舍去) 當(dāng)m=1時(shí),方程為2x2-1-x=0 a=2,b=-1,c=-1 b2-4ac=(-1)2-4×2×(-1)=1+8=9 x= x1=,x2=- 因此,該方程是一元二次方程時(shí),m=1,兩根x1=1,x2=- (2)存在根據(jù)題意,得:m2+1=1,m2=0,m=0 因?yàn)楫?dāng)m=0時(shí),(m+1)+(m-2)=2m-1=-10 所以m=0滿足題意 當(dāng)m2+1=0,m不存在 當(dāng)m+1=0,即m=-1時(shí),m-2=-30 所以m=-1也滿足題意 當(dāng)m=0時(shí),一元一次方程是x-2x-1=0, 解得:x=-1 當(dāng)m=-1時(shí),一元一次方程是-3x-1=0 解得x=- 因此,當(dāng)m=0或-1時(shí),該方程是一元一次方程,并且當(dāng)m=0時(shí),其根為x=-1;當(dāng)m=-1時(shí),其一元一次方程的根為x=- 五、歸納小結(jié) 本節(jié)課應(yīng)掌握: (1)求根公式的概念及其推導(dǎo)過(guò)程; (2)公式法的概念; (3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項(xiàng)要變號(hào),盡量讓a>0.2)找出系數(shù)a,b,c,注意各項(xiàng)的系數(shù)包括符號(hào)。3)計(jì)算b2-4ac,若結(jié)果為負(fù)數(shù),方程無(wú)解,4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果。 (4)初步了解一元二次方程根的情況 六、布置作業(yè)1教材P45 復(fù)習(xí)鞏固4 2選用作業(yè)設(shè)計(jì): 一、選擇題 1用公式法解方程4x2-12x=3,得到( )Ax= Bx= Cx= Dx= 2方程x2+4x+6=0的根是( )Ax1=,x2= Bx1=6,x2=Cx1=2,x2= Dx1=x2=- 3(m2-n2)(m2-n2-2)-8=0,則m2-n2的值是( ) A4 B-2 C4或-2 D-4或2 二、填空題 1一元二次方程ax2+bx+c=0(a0)的求根公式是_,條件是_ 2當(dāng)x=_時(shí),代數(shù)式x2-8x+12的值是-4 3若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_ 三、綜合提高題 1用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0 2設(shè)x1,x2是一元二次方程ax2+bx+c=0(a0)的兩根,(1)試推導(dǎo)x1+x2=-,x1·x2=;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值 3某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí)元收費(fèi) (1)若某戶2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況月份用電量(千瓦時(shí))交電費(fèi)總金額(元) 3 80 25 4 45 10根據(jù)上表數(shù)據(jù),求電廠規(guī)定的A值為多少?課后反思:第7課時(shí) 22.2.4 判別一元二次方程根的情況 教學(xué)內(nèi)容 用b2-4ac大于、等于0、小于0判別ax2+bx+c=0(a0)的根的情況及其運(yùn)用 教學(xué)目標(biāo) 掌握b2-4ac>0,ax2+bx+c=0(a0)有兩個(gè)不等的實(shí)根,反之也成立;b2-4ac=0,ax2+bx+c=0(a0)有兩個(gè)相等的實(shí)數(shù)根,反之也成立;b2-4ac<0,ax2+bx+c=0(a0)沒(méi)實(shí)根,反之也成立;及其它們關(guān)系的運(yùn)用 通過(guò)復(fù)習(xí)用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一題,分析它們根的情況,從具體到一般,給出三個(gè)結(jié)論并應(yīng)用它們解決一些具體題目 重難點(diǎn)關(guān)鍵 1重點(diǎn):b2-4ac>0一元二次方程有兩個(gè)不相等的實(shí)根;b2-4ac=0一元二次方程有兩個(gè)相等的實(shí)數(shù);b2-4ac<0一元二次方程沒(méi)有實(shí)根 2難點(diǎn)與關(guān)鍵 從具體題目來(lái)推出一元二次方程ax2+bx+c=0(a0)的b2-4ac的情況與根的情況的關(guān)系 教具、學(xué)具準(zhǔn)備 小黑板 教學(xué)過(guò)程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))用公式法解下列方程 (1)2x2-3x=0 (2)3x2-2x+1=0 (3)4x2+x+1=0老師點(diǎn)評(píng),(三位同學(xué)到黑板上作)老師只要點(diǎn)評(píng)(1)b2-4ac=9>0,有兩個(gè)不相等的實(shí)根;(2)b2-4ac=12-12=0,有兩個(gè)相等的實(shí)根;(3)b2-4ac=-4×4×1=<0,方程沒(méi)有實(shí)根.二、探索新知方程b2-4ac的值b2-4ac的符號(hào)x1、x2的關(guān)系(填相等、不等或不存在)2x2-3x=03x2-2x+1=04x2+x+1=0請(qǐng)觀察上表,結(jié)合b2-4ac的符號(hào),歸納出一元二次方程的根的情況。證明你的猜想。 從前面的具體問(wèn)題,我們已經(jīng)知道b2-4ac>0(<0,=0)與根的情況,現(xiàn)在我們從求根公式的角度來(lái)分析: 求根公式:x=,當(dāng)b2-4ac>0時(shí),根據(jù)平方根的意義,等于一個(gè)具體數(shù),所以一元一次方程的x1=x1=,即有兩個(gè)不相等的實(shí)根當(dāng)b2-4ac=0時(shí),根據(jù)平方根的意義=0,所以x1=x2=,即有兩個(gè)相等的實(shí)根;當(dāng)b2-4ac<0時(shí),根據(jù)平方根的意義,負(fù)數(shù)沒(méi)有平方根,所以沒(méi)有實(shí)數(shù)解 因此,(結(jié)論)(1)當(dāng)b2-4ac>0時(shí),一元二次方程ax2+bx+c=0(a0)有兩個(gè)不相等實(shí)數(shù)根即x1=,x2= (2)當(dāng)b-4ac=0時(shí),一元

注意事項(xiàng)

本文(《一元二次方程》全章教案.doc)為本站會(huì)員(最***)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!