(全國(guó)通用)2020年高三數(shù)學(xué) 第05課時(shí) 第一章 集合與簡(jiǎn)易邏輯 簡(jiǎn)易邏輯專(zhuān)題復(fù)習(xí)教案
-
資源ID:111909584
資源大?。?span id="pfi5trd" class="font-tahoma">316.50KB
全文頁(yè)數(shù):3頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
(全國(guó)通用)2020年高三數(shù)學(xué) 第05課時(shí) 第一章 集合與簡(jiǎn)易邏輯 簡(jiǎn)易邏輯專(zhuān)題復(fù)習(xí)教案
第05課時(shí):第一章 集合與簡(jiǎn)易邏輯簡(jiǎn)易邏輯一課題:簡(jiǎn)易邏輯二教學(xué)目標(biāo):了解命題的概念和命題的構(gòu)成;理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;理解四種命題及其互相關(guān)系;反證法在證明過(guò)程中的應(yīng)用三教學(xué)重點(diǎn):復(fù)合命題的構(gòu)成及其真假的判斷,四種命題的關(guān)系四教學(xué)過(guò)程:(一)主要知識(shí):1理解由“或”“且”“非”將簡(jiǎn)單命題構(gòu)成的復(fù)合命題; 2由真值表判斷復(fù)合命題的真假;3四種命題間的關(guān)系(二)主要方法:1邏輯聯(lián)結(jié)詞“或”“且”“非”與集合中的并集、交集、補(bǔ)集有著密切的關(guān)系,解題時(shí)注意類(lèi)比; 2通常復(fù)合命題“或”的否定為“且”、“且”的否定為“或”、“全為”的否定是“不全為”、“都是”的否定為“不都是”等等;3有時(shí)一個(gè)命題的敘述方式比較的簡(jiǎn)略,此時(shí)應(yīng)先分清條件和結(jié)論,該寫(xiě)成“若,則”的形式;4反證法中出現(xiàn)怎樣的矛盾,要在解題的過(guò)程中隨時(shí)審視推出的結(jié)論是否與題設(shè)、定義、定理、公理、公式、法則等矛盾,甚至自相矛盾 (三)例題分析:例1指出下列命題的構(gòu)成形式及構(gòu)成它的簡(jiǎn)單命題,并判斷復(fù)合命題的真假:(1)菱形對(duì)角線相互垂直平分(2)“”解:(1)這個(gè)命題是“且”形式,菱形的對(duì)角線相互垂直;菱形的對(duì)角線相互平分,為真命題,也是真命題 且為真命題(2)這個(gè)命題是“或”形式,;,為真命題,是假命題 或?yàn)檎婷}注:判斷復(fù)合命題的真假首先應(yīng)看清該復(fù)合命題的構(gòu)成形式,然后判斷構(gòu)成它的簡(jiǎn)單命題的真假,再由真值表判斷復(fù)合命題的真假例2分別寫(xiě)出命題“若,則全為零”的逆命題、否命題和逆否命題解:否命題為:若,則不全為零逆命題:若全為零,則逆否命題:若不全為零,則注:寫(xiě)四種命題時(shí)應(yīng)先分清題設(shè)和結(jié)論例3命題“若,則有實(shí)根”的逆否命題是真命題嗎?證明你的結(jié)論解:方法一:原命題是真命題,因而方程有實(shí)根,故原命題“若,則有實(shí)根”是真命題;又因原命題與它的逆否命題是等價(jià)的,故命題“若,則有實(shí)根”的逆否命題是真命題方法二:原命題“若,則有實(shí)根”的逆否命題是“若無(wú)實(shí)根,則”無(wú)實(shí)根即,故原命題的逆否命題是真命題例4(考點(diǎn)6智能訓(xùn)練14題)已知命題:方程有兩個(gè)不相等的實(shí)負(fù)根,命題:方程無(wú)實(shí)根;若或?yàn)檎?,且為假,求?shí)數(shù)的取值范圍分析:先分別求滿足條件和的的取值范圍,再利用復(fù)合命題的真假進(jìn)行轉(zhuǎn)化與討論解:由命題可以得到: 由命題可以得到: 或?yàn)檎妫覟榧?有且僅有一個(gè)為真當(dāng)為真,為假時(shí),當(dāng)為假,為真時(shí),所以,的取值范圍為或例5(高考A計(jì)劃考點(diǎn)5智能訓(xùn)練第14題)已知函數(shù)對(duì)其定義域內(nèi)的任意兩個(gè)數(shù),當(dāng)時(shí),都有,證明:至多有一個(gè)實(shí)根解:假設(shè)至少有兩個(gè)不同的實(shí)數(shù)根,不妨假設(shè),由方程的定義可知:即由已知時(shí),有這與式矛盾因此假設(shè)不能成立故原命題成立注:反證法時(shí)對(duì)結(jié)論進(jìn)行的否定要正確,注意區(qū)別命題的否定與否命題例6(高考A計(jì)劃考點(diǎn)5智能訓(xùn)練第5題)用反證法證明命題:若整數(shù)系數(shù)一元二次方程:有有理根,那么中至少有一個(gè)是偶數(shù),下列假設(shè)中正確的是( )A.假設(shè)都是偶數(shù) B.假設(shè)都不是偶數(shù) C.假設(shè)至多有一個(gè)是偶數(shù) D.假設(shè)至多有兩個(gè)是偶數(shù)(四)鞏固練習(xí):1命題“若不正確,則不正確”的逆命題的等價(jià)命題是 ( )A.若不正確,則不正確 B. 若不正確,則正確C 若正確,則不正確 D. 若正確,則正確2“若,則沒(méi)有實(shí)根”,其否命題是 ( )A 若,則沒(méi)有實(shí)根B 若,則有實(shí)根C 若,則有實(shí)根D 若,則沒(méi)有實(shí)根