高中數(shù)學(xué)必修5第一章 解三角形練習(xí)
-
資源ID:111616470
資源大小:778KB
全文頁(yè)數(shù):13頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說(shuō)明有答案則都視為沒有答案,請(qǐng)知曉。
|
高中數(shù)學(xué)必修5第一章 解三角形練習(xí)
(數(shù)學(xué)必修5)第一章 解三角形練習(xí)基礎(chǔ)訓(xùn)練一一、選擇題1在ABC中,若,則等于( )A B C D2若為ABC的內(nèi)角,則下列函數(shù)中一定取正值的是( )A B C D3在ABC中,角均為銳角,且則ABC的形狀是( )A直角三角形 B銳角三角形 C鈍角三角形 D等腰三角形 4等腰三角形一腰上的高是,這條高與底邊的夾角為,則底邊長(zhǎng)為( )A B C D5在中,若,則等于( )A B C D 6邊長(zhǎng)為的三角形的最大角與最小角的和是( ) A B C D 二、填空題1在ABC中,則的最大值是_。2在ABC中,若_。3在ABC中,若_。4在ABC中,若,則_。5在ABC中,則的最大值是_。三、解答題1 在ABC中,若則ABC的形狀是什么?2在ABC中,求證:3在銳角ABC中,求證:。4在ABC中,設(shè)求的值。 綜合訓(xùn)練二一、選擇題1在ABC中,則等于( )A B C D 2在ABC中,若角為鈍角,則的值( )A大于零 B小于零 C等于零 D不能確定 3在ABC中,若,則等于( )A B C D 4在ABC中,若,則ABC的形狀是( )A直角三角形 B等邊三角形 C不能確定 D等腰三角形 5在ABC中,若則 ( )A B C D 6在ABC中,若,則最大角的余弦是( )A B C D 7在ABC中,若,則ABC的形狀是( )A直角三角形 B等腰三角形 C等腰直角三角形 D等腰三角形或直角三角形 二、填空題1若在ABC中,則=_。2若是銳角三角形的兩內(nèi)角,則_(填>或<)。3在ABC中,若_。4在ABC中,若則ABC的形狀是_。5在ABC中,若_。6在銳角ABC中,若,則邊長(zhǎng)的取值范圍是_。三、解答題1 在ABC中,求。2 在銳角ABC中,求證:。3 在ABC中,求證:。4 在ABC中,若,則求證:。5在ABC中,若,則求證: 提高訓(xùn)練三一、選擇題1為ABC的內(nèi)角,則的取值范圍是( )A B C D 2在ABC中,若則三邊的比等于( )A B C D3在ABC中,若,則其面積等于( )A B C D4在ABC中,則下列各式中正確的是( )A B C D5在ABC中,若,則( )A B C D 6在ABC中,若,則ABC的形狀是( )A直角三角形 B等腰或直角三角形 C不能確定 D等腰三角形 二、填空題1在ABC中,若則一定大于,對(duì)嗎?填_(對(duì)或錯(cuò))2在ABC中,若則ABC的形狀是_。3在ABC中,C是鈍角,設(shè)則的大小關(guān)系是_。4在ABC中,若,則_。5在ABC中,若則B的取值范圍是_。6在ABC中,若,則的值是_。三、解答題1在ABC中,若,請(qǐng)判斷三角形的形狀。2 如果ABC內(nèi)接于半徑為的圓,且求ABC的面積的最大值。3 已知ABC的三邊且,求4在ABC中,若,且,邊上的高為,求角的大小與邊的長(zhǎng) 參考答案基礎(chǔ)訓(xùn)練一一、選擇題 1.C 2.A 3.C 都是銳角,則4.D 作出圖形5.D 或 6.B 設(shè)中間角為,則為所求二、填空題 1. 2. 3. 4. ,令 5. 三、解答題 1. 解:或,得或所以ABC是直角三角形。 2. 證明:將,代入右邊 得右邊左邊, 3證明:ABC是銳角三角形,即 ,即;同理;4.解:,即,而,綜合訓(xùn)練二一、選擇題 1.C 2.A ,且都是銳角, 3.D 4.D ,等腰三角形5.B 6.C ,為最大角,7.D , ,或所以或二、填空題 1. 2. ,即,3. 4. 銳角三角形 為最大角,為銳角5. 6 三、解答題1.解: ,而所以 2. 證明:ABC是銳角三角形,即 ,即;同理;3. 證明: 4證明:要證,只要證,即 而原式成立。 5證明: 即 即,提高訓(xùn)練三一、選擇題 1.C 而2.B 3.D 4.D 則, ,5.C 6.B 二、填空題1. 對(duì) 則2. 直角三角形 3. 4 則5. 6 三、解答題1. 解: 等腰或直角三角形 2. 解: 另法: 此時(shí)取得等號(hào)3. 解:4. 解: ,聯(lián)合 得,即 當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),。