高考數(shù)學(xué)教學(xué)論文 中涂色問(wèn)題的常見解法及策略(通用)
-
資源ID:110165514
資源大小:424KB
全文頁(yè)數(shù):5頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說(shuō)明有答案則都視為沒有答案,請(qǐng)知曉。
|
高考數(shù)學(xué)教學(xué)論文 中涂色問(wèn)題的常見解法及策略(通用)
高考數(shù)學(xué)中涂色問(wèn)題的常見解法及策略與涂色問(wèn)題有關(guān)的試題新穎有趣,近年已經(jīng)在高考題中出現(xiàn),其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,因而這類問(wèn)題有利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見類型及求解方法一、 區(qū)域涂色問(wèn)題1、 根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1、 用5種不同的顏色給圖中標(biāo)、的各部分涂色,每部分只涂一種顏色,相鄰部分涂不同顏色,則不同的涂色方法有多少種? 分析:先給號(hào)區(qū)域涂色有5種方法,再給號(hào)涂色有4種方法,接著給號(hào)涂色方法有3種,由于號(hào)與、不相鄰,因此號(hào)有4種涂法,根據(jù)分步計(jì)數(shù)原理,不同的涂色方法有2、 根據(jù)共用了多少種顏色討論,分別計(jì)算出各種出各種情形的種數(shù),再用加法原理求出不同的涂色方法種數(shù)。例2、四種不同的顏色涂在如圖所示的6個(gè)區(qū)域,且相鄰兩個(gè)區(qū)域不能同色。2分析:依題意只能選用4種顏色,要分四類:(1)與同色、與同色,則有;(2)與同色、與同色,則有;(3)與同色、與同色,則有;(4)與同色、與同色,則有;(5)與同色、與同色,則有;所以根據(jù)加法原理得涂色方法總數(shù)為5=120例3、如圖所示,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,則不同的著方法共有多少種? 分析:依題意至少要用3種顏色243151) 當(dāng)先用三種顏色時(shí),區(qū)域2與4必須同色,2) 區(qū)域3與5必須同色,故有種;3) 當(dāng)用四種顏色時(shí),若區(qū)域2與4同色,4) 則區(qū)域3與5不同色,有種;若區(qū)域3與5同色,則區(qū)域2與4不同色,有種,故用四種顏色時(shí)共有2種。由加法原理可知滿足題意的著色方法共有+2=24+224=723、 根據(jù)某兩個(gè)不相鄰區(qū)域是否同色分類討論,從某兩個(gè)不相鄰區(qū)域同色與不同色入手,分別計(jì)算出兩種情形的種數(shù),再用加法原理求出不同涂色方法總數(shù)。例4用紅、黃、藍(lán)、白、黑五種顏色涂在如圖所示的四個(gè)區(qū)域內(nèi),每個(gè)區(qū)域涂一種顏色,相鄰兩個(gè)區(qū)域涂不同的顏色,如果顏色可以反復(fù)使用,共有多少種不同的涂色方法?分析:可把問(wèn)題分為三類:1234(1) 四格涂不同的顏色,方法種數(shù)為;(2) 有且僅兩個(gè)區(qū)域相同的顏色,即只有一組對(duì)角小方格涂相同的顏色,涂法種數(shù)為;5) 兩組對(duì)角小方格分別涂相同的顏色,涂法種數(shù)為,因此,所求的涂法種數(shù)為4、 根據(jù)相間區(qū)使用顏色的種類分類ABCDEF例5如圖, 6個(gè)扇形區(qū)域A、B、C、D、E、F,現(xiàn)給這6個(gè)區(qū)域著色,要求同一區(qū)域涂同一種顏色,相鄰的兩個(gè)區(qū)域不得使用同一種顏色,現(xiàn)有4種不同的顏色可解(1)當(dāng)相間區(qū)域A、C、E著同一種顏色時(shí),有4種著色方法,此時(shí),B、D、F各有3種著色方法,此時(shí),B、D、F各有3種著色方法故有種方法。 (2)當(dāng)相間區(qū)域A、C、E著色兩不同的顏色時(shí),有種著色方法,此時(shí)B、D、F有種著色方法,故共有種著色方法。 (3)當(dāng)相間區(qū)域A、C、E著三種不同的顏色時(shí)有種著色方法,此時(shí)B、D、F各有2種著色方法。此時(shí)共有種方法。故總計(jì)有108+432+192=732種方法。說(shuō)明:關(guān)于扇形區(qū)域區(qū)域涂色問(wèn)題還可以用數(shù)列中的遞推公來(lái)解決。 如:如圖,把一個(gè)圓分成個(gè)扇形,每個(gè)扇形用紅、白、藍(lán)、黑四色之一染色,要求相鄰扇形不同色,有多少種染色方法?解:設(shè)分成n個(gè)扇形時(shí)染色方法為種(1) 當(dāng)n=2時(shí)、有=12種,即=12(2) 當(dāng)分成n個(gè)扇形,如圖,與不同色,與 不同色,與不同色,共有種染色方法, 但由于與鄰,所以應(yīng)排除與同色的情形;與同色時(shí),可把、 看成一個(gè)扇形,與前個(gè)扇形加在一起為個(gè)扇形,此時(shí)有種染色法,故有如下遞推關(guān)系: 二、 點(diǎn)的涂色問(wèn)題方法有:(1)可根據(jù)共用了多少種顏色分類討論,(2)根據(jù)相對(duì)頂點(diǎn)是否同色分類討論,(3)將空間問(wèn)題平面化,轉(zhuǎn)化成區(qū)域涂色問(wèn)題。例6、將一個(gè)四棱錐的每個(gè)頂點(diǎn)染上一種顏色,并使同一條棱的兩端點(diǎn)異色,如果只有5種顏色可供使用,那么不同的染色方法的總數(shù)是多少?解法一:滿足題設(shè)條件的染色至少要用三種顏色。(1)若恰用三種顏色,可先從五種顏色中任選一種染頂點(diǎn)S,再?gòu)挠嘞碌乃姆N顏色中任選兩種涂A、B、C、D四點(diǎn),此時(shí)只能A與C、B與D分別同色,故有種方法。(2)若恰用四種顏色染色,可以先從五種顏色中任選一種顏色染頂點(diǎn)S,再?gòu)挠嘞碌乃姆N顏色中任選兩種染A與B,由于A、B顏色可以交換,故有種染法;再?gòu)挠嘞碌膬煞N顏色中任選一種染D或C,而D與C,而D與C中另一個(gè)只需染與其相對(duì)頂點(diǎn)同色即可,故有種方法。(3)若恰用五種顏色染色,有種染色法綜上所知,滿足題意的染色方法數(shù)為60+240+120=420種。 解法二:設(shè)想染色按SABCD的順序進(jìn)行,對(duì)S、A、B染色,有種染色方法。 由于C點(diǎn)的顏色可能與A同色或不同色,這影響到D點(diǎn)顏色的選取方法數(shù),故分類討論: C與A同色時(shí)(此時(shí)C對(duì)顏色的選取方法唯一),D應(yīng)與A(C)、S不同色,有3種選擇;C與A不同色時(shí),C有2種選擇的顏色,D也有2種顏色可供選擇,從而對(duì)C、D染色有種染色方法。 由乘法原理,總的染色方法是SCDAB解法三:可把這個(gè)問(wèn)題轉(zhuǎn)化成相鄰區(qū)域不同色問(wèn)題:如圖,對(duì)這五個(gè)區(qū)域用5種顏色涂色,有多少種不同的涂色方法?解答略。三、 線段涂色問(wèn)題對(duì)線段涂色問(wèn)題,要注意對(duì)各條線段依次涂色,主要方法有:1) 根據(jù)共用了多少顏色分類討論2) 根據(jù)相對(duì)線段是否同色分類討論。例7、用紅、黃、藍(lán)、白四種顏色涂矩形ABCD的四條邊,每條邊只涂一種顏色,且使相鄰兩邊涂不同的顏色,如果顏色可以反復(fù)使用,共有多少種不同的涂色方法?解法一:(1)使用四顏色共有種(2)使用三種顏色涂色,則必須將一組對(duì)邊染成同色,故有種,(3)使用二種顏色時(shí),則兩組對(duì)邊必須分別同色,有種因此,所求的染色方法數(shù)為種解法二:涂色按ABBCCDDA的順序進(jìn)行,對(duì)AB、BC涂色有種涂色方法。由于CD的顏色可能與AB同色或不同色,這影響到DA顏色的選取方法數(shù),故分類討論:當(dāng)CD與AB同色時(shí),這時(shí)CD對(duì)顏色的選取方法唯一,則DA有3種顏色可供選擇CD與AB不同色時(shí),CD有兩種可供選擇的顏色,DA也有兩種可供選擇的顏色,從而對(duì)CD、DA涂色有種涂色方法。由乘法原理,總的涂色方法數(shù)為種例8、用六種顏色給正四面體的每條棱染色,要求每條棱只染一種顏色且共頂點(diǎn)的棱涂不同的顏色,問(wèn)有多少種不同的涂色方法? 解:(1)若恰用三種顏色涂色,則每組對(duì)棱必須涂同一顏色,而這三組間的顏色不同,故有種方法。(2)若恰用四種顏色涂色,則三組對(duì)棱中有二組對(duì)棱的組內(nèi)對(duì)棱涂同色,但組與組之間不同色,故有種方法。(3)若恰用五種顏色涂色,則三組對(duì)棱中有一組對(duì)棱涂同一種顏色,故有種方法。(4)若恰用六種顏色涂色,則有種不同的方法。 綜上,滿足題意的總的染色方法數(shù)為種。四、 面涂色問(wèn)題例9、從給定的六種不同顏色中選用若干種顏色,將一個(gè)正方體的6個(gè)面涂色,每?jī)蓚€(gè)具有公共棱的面涂成不同的顏色,則不同的涂色方案共有多少種?分析:顯然,至少需要3三種顏色,由于有多種不同情況,仍應(yīng)考慮利用加法原理分類、乘法原理分步進(jìn)行討論解:根據(jù)共用多少種不同的顏色分類討論(1)用了六種顏色,確定某種顏色所涂面為下底面,則上底顏色可有5種選擇,在上、下底已涂好后,再確定其余4種顏色中的某一種所涂面為左側(cè)面,則其余3個(gè)面有3!種涂色方案,根據(jù)乘法原理(2)共用五種顏色,選定五種顏色有種方法,必有兩面同色(必為相對(duì)面),確定為上、下底面,其顏色可有5種選擇,再確定一種顏色為左側(cè)面,此時(shí)的方法數(shù)取決于右側(cè)面的顏色,有3種選擇(前后面可通過(guò)翻轉(zhuǎn)交換);(3)共用四種顏色,仿上分析可得;(4)共用三種顏色,例10、四棱錐,用4種不同的顏色涂在四棱錐的各個(gè)面上,要求相鄰不同色,有多少種涂法? ABCDP53214 解:這種面的涂色問(wèn)題可轉(zhuǎn)化為區(qū)域涂色問(wèn)題,如右圖,區(qū)域1、2、3、4相當(dāng)于四個(gè)側(cè)面,區(qū)域5相當(dāng)于底面;根據(jù)共用顏色多少分類:(1) 最少要用3種顏色,即1與3同色、2與4同色,此時(shí)有種;(2) 當(dāng)用4種顏色時(shí),1與3同色、2與4兩組中只能有一組同色,此時(shí)有;故滿足題意總的涂色方法總方法交總數(shù)為