2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第一部分 基礎(chǔ)與考點(diǎn)過(guò)關(guān) 第五章 數(shù)列學(xué)案
第五章數(shù)列第1課時(shí)數(shù)列的概念及其簡(jiǎn)單表示法理解數(shù)列的概念,認(rèn)識(shí)數(shù)列是反映自然規(guī)律的基本數(shù)學(xué)模型,探索并掌握數(shù)列的幾種簡(jiǎn)單表示法(列表、圖象、通項(xiàng)公式);了解數(shù)列是一種特殊的函數(shù);發(fā)現(xiàn)數(shù)列規(guī)律,寫出其通項(xiàng)公式 了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式). 了解數(shù)列是自變量為正整數(shù)的一類函數(shù). 會(huì)利用數(shù)列的前n項(xiàng)和求通項(xiàng)公式1. (必修5P34習(xí)題3改編)已知數(shù)列an滿足an4an13,且a10,則a 5_答案:255解析:a24a133,a34a234×3315,a44a334×15363,a54a434×633255.2. (必修5P34習(xí)題2改編)數(shù)列1,的一個(gè)通項(xiàng)公式是_答案:an(1)n解析:1,數(shù)列1,4,9,16,對(duì)應(yīng)通項(xiàng)n2,數(shù)列1,3,5,7,對(duì)應(yīng)通項(xiàng)2n1,數(shù)列1,1,1,1,對(duì)應(yīng)通項(xiàng)(1)n,故an(1)n.3. (必修5P48習(xí)題9改編)若數(shù)列an的前n項(xiàng)和Snn23n,則_答案:2解析: 數(shù)列an的前n項(xiàng)和Snn23n, a1a2a3S3323×318,a4a5a6S6S336, 2.4. (必修5P34習(xí)題9改編)已知數(shù)列an的通項(xiàng)公式是ann28n5,則這個(gè)數(shù)列的最小項(xiàng)是_答案: 11解析:由an(n4)211,可知n4時(shí),an取最小值為11.5. (必修5P34習(xí)題5改編)已知數(shù)列,2,則4是這個(gè)數(shù)列的第_項(xiàng)答案:11解析:易知該數(shù)列的通項(xiàng)為,則有4,得n11,則4是這個(gè)數(shù)列的第11項(xiàng)1. 數(shù)列的定義按照一定順序排列的一列數(shù)稱為數(shù)列數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)排在第一位的數(shù)稱為這個(gè)數(shù)列的第1項(xiàng),通常也叫做首項(xiàng)2. 數(shù)列的分類項(xiàng)數(shù)有限的數(shù)列叫做有窮數(shù)列項(xiàng)數(shù)無(wú)限的數(shù)列叫做無(wú)窮數(shù)列3. 數(shù)列與函數(shù)的關(guān)系從函數(shù)觀點(diǎn)看,數(shù)列可以看成是以正整數(shù)或其子集為定義域的函數(shù)anf(n),當(dāng)自變量按照從小到大的順序依次取值時(shí)所對(duì)應(yīng)的一列函數(shù)值反過(guò)來(lái),對(duì)于函數(shù)yf(x),如果f(i)(i1,2,3,)有意義,那么可以得到一個(gè)數(shù)列f(n)4. 數(shù)列的通項(xiàng)公式如果數(shù)列an的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)公式anf(n)(n1,2,3,)來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式通項(xiàng)公式可以看成數(shù)列的函數(shù)解析式5. 數(shù)列an的前n項(xiàng)和Sn與通項(xiàng)an的關(guān)系是an備課札記,1由數(shù)列的前幾項(xiàng)求數(shù)列的通項(xiàng)),1)根據(jù)下面各數(shù)列前幾項(xiàng)的值,寫出數(shù)列的一個(gè)通項(xiàng)公式:(1) 1,7,13,19,;(2) ,;(3) 1,0,0,0,0,;(4) 1,2,3,4,.解:(1) 偶數(shù)項(xiàng)為正,奇數(shù)項(xiàng)為負(fù),故通項(xiàng)公式必含有因式(1)n,觀察各項(xiàng)的絕對(duì)值,后一項(xiàng)的絕對(duì)值總比它前一項(xiàng)的絕對(duì)值大6,故數(shù)列的一個(gè)通項(xiàng)公式為an(1)n(6n5)(2) 這是一個(gè)分?jǐn)?shù)數(shù)列,其分子構(gòu)成偶數(shù)數(shù)列,而分母可分解為1×3,3×5,5×7,7×9,9×11,每一項(xiàng)都是兩個(gè)相鄰奇數(shù)的乘積故所求數(shù)列的一個(gè)通項(xiàng)公式為an.(3)將數(shù)列改寫為,則an.(4) 觀察不難發(fā)現(xiàn)11,222,333,一般地,ann.則ann.變式訓(xùn)練(1) 數(shù)列,的一個(gè)通項(xiàng)公式an_;(2) 該數(shù)列,的一個(gè)通項(xiàng)公式為_(kāi)答案:(1) (1)n(2) 解析:(1) 這個(gè)數(shù)列前4項(xiàng)的絕對(duì)值都等于項(xiàng)數(shù)與項(xiàng)數(shù)加1的積的倒數(shù),且奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,所以它的一個(gè)通項(xiàng)公式為an(1)n.(2) 各項(xiàng)的分子為22,32,42,52,分母比分子大1,因此該數(shù)列的一個(gè)通項(xiàng)公式為an.,2由an與Sn關(guān)系求an),2)已知數(shù)列an的前n項(xiàng)和Sn,求通項(xiàng)an.(1) Sn3n1;(2) Sn2n1.解:(1) 當(dāng)n1時(shí),a1S12.當(dāng)n2時(shí),anSnSn12·3n1.當(dāng)n1時(shí),an2符合上式 an2·3n1.(2) 當(dāng)n1時(shí),a1S12113;當(dāng)n2時(shí),anSnSn1(2n1)(2n11)2n2n12n1.當(dāng)n1時(shí),an3不符合上式綜上有 an變式訓(xùn)練(1) 已知數(shù)列an的前n項(xiàng)和Sn3n1,則an_;(2) 若數(shù)列an的前n項(xiàng)和Snan,則an的通項(xiàng)公式an_答案:(1) (2) (2)n1解析:(1) 當(dāng)n1時(shí),a1S1314,當(dāng)n2時(shí),anSnSn13n13n112·3n1. a14不適合上等式, an(2) 由Snan得,當(dāng)n2時(shí),Sn1an1,兩式相減,得ananan1, 當(dāng)n2時(shí),an2an1,即2.又n1時(shí),S1a1a1,a11, an(2)n1.,3由數(shù)列的遞推關(guān)系求數(shù)列的通項(xiàng)公式),3)(1) 設(shè)數(shù)列an中,a12,an1ann1,則通項(xiàng)公式an_;(2) a11,anan1(n2,nN*),通項(xiàng)公式an_;(3) 在數(shù)列an中,a11,前n項(xiàng)和Snan,則an的通項(xiàng)公式為an_答案:(1) 1(2) 2(nN*)(3) 解析:(1) 由題意得,當(dāng)n2時(shí),ana1(a2a1)(a3a2)(anan1)2(23n)21.又a112,符合上式,因此an1.(2) 由anan1(n2),得anan1(n2)則a2a1,a3a2,anan1.將上述n1個(gè)式子累加,得an2.當(dāng)n1時(shí),a11也滿足,故an2(nN*)(3) 由題設(shè)知,a11.當(dāng)n>1時(shí),anSnSn1anan1, , ,3.以上n1個(gè)式子的等號(hào)兩端分別相乘,得到. a11, an.(1) 已知數(shù)列an滿足a11,an3n1an1(n2),則an_(2) 已知數(shù)列an滿足a11,an·an1(n2),則an_答案:(1) an(2) 解析:(1) 由a11,anan13n1(n2),得a11,a2a131,a3a232,an1an23n2,anan13n1,以上等式兩邊分別相加得an13323n1.當(dāng)n1時(shí),a11也適合, an.(2) an·an1 (n2),an1·an2,a2a1.以上(n1)個(gè)式子相乘得ana1····.當(dāng)n1時(shí)也滿足此等式, an.1. (2017·太原模擬)已知數(shù)列an滿足a11,anan1nanan1(nN*),則an_答案:解析:由anan1nanan1得n,則由累加法得12(n1).因?yàn)閍11,所以1,所以an.2. 設(shè)Sn為數(shù)列an的前n項(xiàng)和,Snkn2n,nN*,其中k是常數(shù)若對(duì)于任意的mN*,am,a2m,a4m成等比數(shù)列,則k的值為_(kāi)答案:0或1解析: Snkn2n,nN*, 數(shù)列an是首項(xiàng)為k1,公差為2k的等差數(shù)列,an2kn1k.又對(duì)于任意的mN*都有aama4m,aa1a4,(3k1)2(k1)(7k1),解得k0或1.又k0時(shí),an1,顯然對(duì)于任意的mN*,am,a2m,a4m成等比數(shù)列;k1時(shí),an2n,am2m,a2m4m,a4m8m,顯然對(duì)于任意的mN*,am,a2m,a4m也成等比數(shù)列綜上所述,k0或1.3. 已知數(shù)列an滿足a11,an1an2n(nN*),則a10等于_答案:32解析: an1an2n, an1an22n1,兩式相除得2.又a1a22,a11, a22,則···24,即a102532.4. 對(duì)于數(shù)列an,定義數(shù)列bn滿足:bnan1an(nN*),且bn1bn1(nN*),a31,a41,則a1_答案:8解析:b3a4a3112,由b3b21,得b23,而b2a3a23,得a24.又b2b11,則b14,而b1a2a14a14,則a18.5. 已知數(shù)列an的前n項(xiàng)和Snan,則an的通項(xiàng)公式an_答案:解析:當(dāng)n1時(shí),a1S1a1, a11.當(dāng)n2時(shí),anSnSn1anan1, . 數(shù)列an為首項(xiàng)a11,公比q的等比數(shù)列,故an()n1.1. 若ann2n3(其中為實(shí)常數(shù)),nN*,且數(shù)列an為單調(diào)遞增數(shù)列,則實(shí)數(shù)的取值范圍是_答案:(3,)解析:(解法1:函數(shù)觀點(diǎn))因?yàn)閍n為單調(diào)遞增數(shù)列, 所以an1>an,即(n1)2(n1)3>n2n3,化簡(jiǎn)為>2n1對(duì)一切nN*都成立,所以>3.故實(shí)數(shù)的取值范圍是(3,)(解法2:數(shù)形結(jié)合法)因?yàn)閍n為單調(diào)遞增數(shù)列,所以a1<a2,要保證a1<a2成立,二次函數(shù)f(x)x2x3的對(duì)稱軸x應(yīng)位于1和2中點(diǎn)的左側(cè),即<,亦即>3,故實(shí)數(shù)的取值范圍為(3,)2. 已知數(shù)列an的前n項(xiàng)和為Sn,且a11,an1Sn,求a2,a3,a4的值及數(shù)列an的通項(xiàng)公式解:由已知得a2,a3,a4.由a11,an1Sn,得anSn1,n2,故an1anSnSn1an,n2,得an1an,n2.又a11,a2,故該數(shù)列從第二項(xiàng)開(kāi)始為等比數(shù)列,故an3. 已知各項(xiàng)均為正數(shù)的數(shù)列an的前n項(xiàng)和為Sn,且Sn滿足S(n2n3)Sn3(n2n)0,nN*.(1) 求a1的值;(2) 求數(shù)列an的通項(xiàng)公式解:(1) 由題設(shè),S(n2n3)Sn3(n2n)0,nN*.令n1,有S(1213)S13×(121)0,可得SS160,解得S13或2,即a13或2.又an為正數(shù),所以a12.(2) 由S(n2n3)Sn3(n2n)0,nN*可得,(Sn3)(Snn2n)0,則Snn2n或Sn3.又?jǐn)?shù)列an的各項(xiàng)均為正數(shù),所以Snn2n,Sn1(n1)2(n1),所以當(dāng)n2時(shí),anSnSn1n2n(n1)2(n1)2n.又a12,所以an2n.4. 設(shè)數(shù)列an的前n項(xiàng)和為Sn.已知a1a(a3),an1Sn3n,nN*.(1) 設(shè)bnSn3n,求數(shù)列bn的通項(xiàng)公式;(2) 若an1an,nN*,求a的取值范圍解:(1) 依題意,Sn1Snan1Sn3n,即Sn12Sn3n,由此得Sn13n12(Sn3n),即bn12bn.又b1S13a3,因此,所求通項(xiàng)公式為bn(a3)2n1,nN*.(2) 由(1)知Sn3n(a3)2n1,nN*,于是,當(dāng)n2時(shí),anSnSn13n(a3)2n13n1(a3)2n22×3n1(a3)2n2,an1an4×3n1(a3)2n22n2.當(dāng)n2時(shí),an1an12a30a9.又a2a13>a1,綜上,所求的a的取值范圍是9,3)(3,)1. 數(shù)列中的數(shù)的有序性是數(shù)列定義的靈魂,要注意辨析數(shù)列的項(xiàng)和數(shù)集中元素的異同,數(shù)列可以看成是一個(gè)定義域?yàn)檎麛?shù)集或其子集的函數(shù),因此在研究數(shù)列問(wèn)題時(shí),既要注意函數(shù)方法的普遍性,又要注意數(shù)列方法的特殊性2. 根據(jù)所給數(shù)列的前幾項(xiàng)求其通項(xiàng),需要仔細(xì)觀察分析,抓住特征:分式中分子、分母的獨(dú)立特征,相鄰項(xiàng)變化的特征,拆項(xiàng)后的特征,各項(xiàng)的符號(hào)特征和絕對(duì)值特征,并由此進(jìn)行歸納、聯(lián)想3. 通項(xiàng)an與其前n項(xiàng)和Sn的關(guān)系是一個(gè)十分重要的考點(diǎn),運(yùn)用時(shí)不要忘記討論an備課札記第2課時(shí)等 差 數(shù) 列(對(duì)應(yīng)學(xué)生用書(文)、(理)8485頁(yè))理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,能在具體的問(wèn)題情境中用等差數(shù)列的有關(guān)知識(shí)解決相應(yīng)的問(wèn)題 理解等差數(shù)列的概念. 掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式. 理解等差中項(xiàng)的概念,掌握等差數(shù)列的性質(zhì)1. (必修5P47習(xí)題5改編)已知等差數(shù)列an的前n項(xiàng)和為Sn,若a12,S312,則a6_答案:12解析:設(shè)等差數(shù)列an的公差為d,由題意知,3×23d12,得d2,則a62(61)×212.2. (必修5P48習(xí)題7改編)在等差數(shù)列an中,(1) 已知a4a142,則S17_;(2) 已知S1155,則a6_;(3) 已知S8100,S16392,則S24_答案:(1) 17(2) 5(3) 876解析:(1) S1717.(2) S1155, a65.(3) S8,S16S8,S24S16成等差數(shù)列, 100S243922×(392100), S24876.3. (必修5P44練習(xí)6改編)設(shè)Sn為等差數(shù)列an的前n項(xiàng)和,已知S55,S927,則S7_答案:14解析:由S5(a1a5)×2a3×5a35,得a31.由S9(a1a9)×2a5×9a527,得a53.從而S7(a1a7)×(a3a5)×4×14.4. (必修5P48習(xí)題11改編)已知數(shù)列an為等差數(shù)列,若a13,11a55a8,則使其前n項(xiàng)和Sn取最小值的n_答案:2解析: a13,11a55a8, d2, Snn24n(n2)24, 當(dāng)n2時(shí),Sn最小5. (必修5P43例2改編)在等差數(shù)列an中,已知d,an,Sn,則a1_答案:3解析:由題意,得由得a1n2,代入得n27n300, n10或n3(舍去), a13.1. 等差數(shù)列的定義(1) 文字語(yǔ)言:如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)減去它的前一項(xiàng)所得的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列(2) 符號(hào)語(yǔ)言:an1and(nN*)2. 等差數(shù)列的通項(xiàng)公式若等差數(shù)列an的首項(xiàng)為a1,公差為d,則其通項(xiàng)公式為ana1(n1)d推廣:anam(nm)d.3. 等差中項(xiàng)如果三個(gè)數(shù)a,A,b成等差數(shù)列,則A叫a和b的等差中項(xiàng),且有A4. 等差數(shù)列的前n項(xiàng)和公式(1) Snna1d(2) Sn5. 等差數(shù)列的性質(zhì)(1) 等差數(shù)列an中,對(duì)任意的m,n,p,qN*,若mnpq,則amanapaq特殊的,若mn2p,則aman2ap(2) 等差數(shù)列an中,依次每m項(xiàng)的和仍成等差數(shù)列,即Sm,S2mSm,S3mS2m,仍成等差數(shù)列6. 當(dāng)項(xiàng)數(shù)為2n(nN),則S偶S奇nd,;當(dāng)項(xiàng)數(shù)為2n1(nN),則S奇S偶an,.,1數(shù)列中的基本量的計(jì)算),1)(1) 設(shè)Sn為等差數(shù)列an的前n項(xiàng)和,S84a3,a72,則a9_;(2) 設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,S36,S412,則S6_答案:(1) 6(2) 30解析:(1) 設(shè)公差為d,則8a128d4a18d,即a15d,a7a16d5d6dd2,所以a9a72d6.(2) 設(shè)數(shù)列an的首項(xiàng)為a1,公差為d,由S36,S412,可得解得即S66a115d30.變式訓(xùn)練(1) 已知an是公差不為0 的等差數(shù)列,Sn是其前n項(xiàng)和,若a2a3a4a5,S91,則a1的值是_;(2) 設(shè)Sn是等差數(shù)列an的前n項(xiàng)和,若a27,S77,則a7的值為_(kāi)答案:(1) (2) 13解析:(1) 設(shè)等差數(shù)列an的公差為d(d0) a2a3a4a5,S91, 解得a1.(2) 設(shè)等差數(shù)列an的公差為d. a27,S77, 解方程組可得 a7a16d116×413.,2判斷或證明一個(gè)數(shù)列是否是等差數(shù)列),2)已知數(shù)列an的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且滿足2Snan4.(1) 求證:an為等差數(shù)列;(2) 求an的通項(xiàng)公式(1) 證明:當(dāng)n1時(shí),有2a1a14,即a2a130,解得a13或a11(舍去)當(dāng)n2時(shí),有2Sn1an5.又2Snan4,兩式相減得2anaa1,即a2an1a,也即(an1)2a,因此an1an1或an1an1.若an1an1,則anan11,而a13,所以a22,這與數(shù)列an的各項(xiàng)均為正數(shù)相矛盾,所以an1an1,即anan11,因此an為等差數(shù)列(2) 解:由(1)知a13,d1,所以數(shù)列an的通項(xiàng)公式an3(n1)×1n2,即ann2.變式訓(xùn)練已知數(shù)列an滿足:a12,an13an3n12n.設(shè)bn.(1) 證明:數(shù)列bn為等差數(shù)列;(2) 求數(shù)列an的通項(xiàng)公式(1) 證明: bn1bn1, 數(shù)列bn為等差數(shù)列(2) 解: b10, bnn1, an(n1)·3n2n.已知數(shù)列an的前n項(xiàng)和為Sn,且滿足:an2SnSn10(n2,nN*),a1,判斷與an是否為等差數(shù)列,并說(shuō)明你的理由解:因?yàn)閍nSnSn1(n2),又an2SnSn10,所以SnSn12SnSn10(n2),所以2(n2)因?yàn)镾1a1,所以是以2為首項(xiàng),2為公差的等差數(shù)列所以2(n1)×22n,故Sn.所以當(dāng)n2時(shí),anSnSn1,所以an1,而an1an.所以當(dāng)n2時(shí),an1an的值不是一個(gè)與n無(wú)關(guān)的常數(shù),故數(shù)列an不是一個(gè)等差數(shù)列綜上可知,是等差數(shù)列,an不是等差數(shù)列,3等差數(shù)列的性質(zhì)),3)(1) 已知an是等差數(shù)列,Sn是其前n項(xiàng)和若a1a3,S510,則a9的值是_;(2) 在等差數(shù)列an中,若a3a4a5a6a725,則a2a8_;(3) 已知等差數(shù)列an的前n項(xiàng)和為Sn,且S1010,S2030,則S30_答案:(1) 20(2) 10(3) 60解析:(1) 由S510得a32,因此22d(2d)23d3,a923×620.(2) 因?yàn)閍n是等差數(shù)列,所以a3a7a4a6a2a82a5,a3a4a5a6a75a525,即a55,a2a82a510.(3) 因?yàn)镾10,S20S10,S30S20成等差數(shù)列,且S1010,S2030,S20S1020,所以2×2010S3030,所以S3060.變式訓(xùn)練(1) 設(shè)等差數(shù)列an的前n項(xiàng)和為Sn.若2a86a11,則S9的值等于_;(2) 設(shè)等差數(shù)列an的前n項(xiàng)和為Sn.若S39,S636,則a7a8a9_答案:(1) 54(2) 45解析:(1) 根據(jù)題意及等差數(shù)列的性質(zhì),知2a8a11a56,根據(jù)等差數(shù)列的求和公式,知S9×9×96×954.(2) 由an是等差數(shù)列,得S3,S6S3,S9S6為等差數(shù)列即2(S6S3)S3(S9S6),得到S9S62S63S345,則a7a8a945.設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,若a53,S1040,求nSn的最小值解:設(shè)等差數(shù)列an的公差為d. a53,S1040, a14d3,10a1d40,解得a15,d2. Sn5n×2n26n,則nSnn2(n6)n5時(shí),nSn0;n6時(shí),nSn0.可得n4時(shí),nSn取得最小值32.,4等差數(shù)列中的最值問(wèn)題),4)(1) 若等差數(shù)列an滿足a7a8a9>0,a7a10<0,當(dāng)n取何值時(shí),an的前n項(xiàng)和最大?(2) 已知數(shù)列an為等差數(shù)列若<1,且an的前n項(xiàng)和Sn有最大值,求使Sn>0時(shí)n的最大值(3) 在等差數(shù)列an中,a1>0,公差d<0,a53a7,其前n項(xiàng)和為Sn,求Sn取得最大值時(shí)n的值解:(1) 由等差數(shù)列的性質(zhì),得a7a8a93a8,a8>0.又a7a10<0, a8a9<0, a9<0, S8>S7,S8>S9,故數(shù)列an的前8項(xiàng)和最大(2) <1,且Sn有最大值, a6>0,a7<0,且a6a7<0, S1111a6>0,S126(a6a7)<0, 使Sn>0的n的最大值為11.(3) 在等差數(shù)列an中,a1>0,公差d<0. a53a7, a14d3(a16d), a17d, Snn(7d)d(n215n), n7或8時(shí),Sn取得最大值已知在等差數(shù)列an中,a131,Sn是它的前n項(xiàng)和,S10S22.(1) 求Sn;(2) 這個(gè)數(shù)列的前多少項(xiàng)的和最大,并求出這個(gè)最大值解:(1) S10a1a2a10,S22a1a2a22,S10S22, a11a12a220,0,即a11a222a131d0.又a131, d2, Snna1d31nn(n1)32nn2.(2) (解法1)由(1)知Sn32nn2, 當(dāng)n16時(shí),Sn有最大值,Sn的最大值是256.(解法2)由Sn32nn2n(32n),欲使Sn有最大值,應(yīng)有1<n<32,從而Sn256,當(dāng)且僅當(dāng)n32n,即n16時(shí),Sn有最大值256.1. (2016·北京卷)已知an為等差數(shù)列,Sn為其前n項(xiàng)和若a16,a3a50,則S6_答案:6解析:設(shè)等差數(shù)列an的公差為d.因?yàn)閍3a50,所以62d64d0,解得d2,所以S66×6×(2)36306.2. (2017·南京、鹽城一模)已知數(shù)列an是等差數(shù)列,Sn是其前n項(xiàng)和若a4a5a621,則S9_答案:63解析:由a4a5a621得a57,所以S99a563.3. 已知公差為d的等差數(shù)列an的前n項(xiàng)和為Sn.若3,則的值為_(kāi)答案:解析:3,則d4a1,則.4. (2017·南通、泰州三調(diào))設(shè)等差數(shù)列an的前n項(xiàng)和為Sn.若公差d2,a510,則S10的值是_答案:110解析: a5a14da1810, a12, S1010a1d110.5. (2017·南通一模)九章算術(shù)中的“竹九節(jié)”問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則該竹子最上面一節(jié)的容積為_(kāi)升答案:解析:設(shè)最上面一節(jié)的容積為a1,由題設(shè)知解得a1.1. (2017·新課標(biāo))等差數(shù)列an的前n項(xiàng)和為Sn,a33,S410,則_答案:解析:設(shè)等差數(shù)列的首項(xiàng)為a1,公差為d,由題意有解得數(shù)列的前n項(xiàng)和Snna1dn×1×1.裂項(xiàng)有:2,據(jù)此,2. 設(shè)Sn是數(shù)列an的前n項(xiàng)和,且a11,an1SnSn1,則an_答案:an解析:由已知得an1Sn1SnSn1·Sn,兩邊同時(shí)除以Sn1·Sn,得1,故數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,則1(n1)n,所以Sn.則當(dāng)n1時(shí),a11;當(dāng)n2時(shí),anSnSn1,所以an(或直接帶入an1SnSn1,但要注意分類討論)3. 已知等差數(shù)列an的首項(xiàng)為1,公差為2,若a1a2a2a3a3a4a4a5a2na2n1tn2對(duì)nN*恒成立,則實(shí)數(shù)t的取值范圍是_答案:(,12解析:a1a2a2a3a3a4a4a5a2na2n1a2(a1a3)a4(a3a5)a2n(a2n1a2n1)4(a2a4a2n)4××n8n24n,所以8n24ntn2,所以t8對(duì)nN*恒成立,t12.4. (2017·南京、鹽城二模)已知數(shù)列an的前n項(xiàng)和為Sn,數(shù)列bn,cn滿足(n1)bnan1,(n2)cn,其中nN*.(1) 若數(shù)列an是公差為2的等差數(shù)列,求數(shù)列cn的通項(xiàng)公式;(2) 若存在實(shí)數(shù),使得對(duì)一切nN*,有bncn,求證:數(shù)列an是等差數(shù)列(1) 解: 數(shù)列an是公差為2的等差數(shù)列, ana12(n1),a1n1. (n2)cn(a1n1)n2,解得cn1.(2) 證明:由(n1)bnan1,可得n(n1)bnnan1Sn,(n1)(n2)bn1(n1)an2Sn1,兩式相減可得an2an1(n2)bn1nbn,可得(n2)cnan1(n1)bn(n1)bn(n1)bn(bnbn1),因此cn(bnbn1) bncn, cn(bnbn1),故bn,cn. (n1)an1,(n2)(an1an2),相減可得(an2an1),即an2an12(n2)又2a2a2a1,則an1an2(n1), 數(shù)列an是等差數(shù)列1. 等差數(shù)列問(wèn)題,首先應(yīng)抓住a1和d,通過(guò)列方程組來(lái)解,其他也就迎刃而解了但若恰當(dāng)?shù)剡\(yùn)用性質(zhì),可以減少運(yùn)算量2. 等差數(shù)列的判定方法有以下幾種: 定義法:an1and(d為常數(shù)); 等差中項(xiàng)法:2an1anan2; 通項(xiàng)公式法:anpnq(p,q為常數(shù));前n項(xiàng)和公式法:SnAn2Bn(A,B為常數(shù))3. 注意設(shè)元,利用對(duì)稱性,減少運(yùn)算量4. 解答某些數(shù)列問(wèn)題,有時(shí)不必(有時(shí)也不可能)求出某些具體量的結(jié)果,可采用整體代換的思想備課札記第3課時(shí)等 比 數(shù) 列(對(duì)應(yīng)學(xué)生用書(文)、(理)8687頁(yè))理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題 理解等比數(shù)列的概念. 掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式. 理解等比中項(xiàng)的概念,掌握等比數(shù)列的性質(zhì)1. (必修5P61習(xí)題2改編)設(shè)Sn是等比數(shù)列an的前n項(xiàng)和,若a11,a632,則S3_答案:7解析:q532,q2,S37.2. 若1,x,y,z,3成等比數(shù)列,則y的值為_(kāi)答案:解析:由等比中項(xiàng)知y23, y±.又 y與1,3符號(hào)相同, y.3. (必修5P54習(xí)題10改編)等比數(shù)列an中,a1>0,a2a42a3a5a4a636,則a3a5_答案:6解析:a2a42a3a5a4a6(a3a5)236.又a1>0, a3,a5>0, a3a56.4. (必修5P61習(xí)題3改編)在等比數(shù)列an中,a37,前3項(xiàng)和S321,則公比q_答案:1或解析:由已知得 化簡(jiǎn)得3.整理得2q2q10,解得q1或q.5. (必修5P56例2改編)設(shè)等比數(shù)列an的前n項(xiàng)和為Sn.若S23,S415,則S6_答案:63解析:設(shè)等比數(shù)列an的首項(xiàng)為a1,公比為q,易知q1,根據(jù)題意可得解得q24,1,所以S6(1)(143)63. 1. 等比數(shù)列的概念(1) 文字語(yǔ)言:如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列(2) 符號(hào)語(yǔ)言:q(nN*,q是等比數(shù)列的公比)2. 等比數(shù)列的通項(xiàng)公式設(shè)an是首項(xiàng)為a1,公比為q的等比數(shù)列,則第n項(xiàng)ana1qn1推廣:anamqnm.3. 等比中項(xiàng)若a,G,b成等比數(shù)列,則G為a和b的等比中項(xiàng)且G±4. 等比數(shù)列的前n項(xiàng)和公式(1) 當(dāng)q1時(shí),Snna1(2) 當(dāng)q1時(shí),Sn5. 等比數(shù)列的性質(zhì)(1) 等比數(shù)列an中,對(duì)任意的m,n,p,qN*,若mnpq,則amanapaq特殊的,若mn2p,則amana(2) 等比數(shù)列an中,依次每m項(xiàng)的和(非零)仍成等比數(shù)列,即Sm,S2mSm,S3mS2m,仍成等比數(shù)列,其公比為qm(q1)(其中Sm0)備課札記,1等比數(shù)列的基本運(yùn)算),1)(1) 設(shè)等比數(shù)列an滿足a1a21,a1a33,則a4_;(2) 等比數(shù)列an的各項(xiàng)均為實(shí)數(shù),其前n項(xiàng)和為Sn,已知S3,S6,則a8_;(3) 設(shè)等比數(shù)列an的前n項(xiàng)和為Sn.若27a3a60,則_答案:(1) 8(2) 32(3) 28解析:(1) 設(shè)等比數(shù)列的公比為q,很明顯q1,結(jié)合等比數(shù)列的通項(xiàng)公式和題意可得方程組由除以可得q2 ,代入可得a11,由等比數(shù)列的通項(xiàng)公式可得a4a1q38.(2) 當(dāng)q1時(shí),顯然不符合題意;當(dāng)q1時(shí),解得則a8×2732.(3) 設(shè)等比數(shù)列的公比為q,首項(xiàng)為a1,則q327.111q328.變式訓(xùn)練(1) 在各項(xiàng)均為正數(shù)的等比數(shù)列an中,若a21,a8a62a4,則a6的值是_;(2) 設(shè)等比數(shù)列an滿足a1a310,a2a45,則a1a2a3an的最大值為_(kāi)答案:(1) 4(2) 64解析:(1) 設(shè)等比數(shù)列an的公比為q,由a21,a8a62a4得q6q42q2,q4q220,解得q22,則a6a2q44.(2) 因?yàn)閍1a310,a2a45,所以公比q,所以a1a1×10a18,a1a2a3an8n12n123n·223n2,所以當(dāng)n3或4時(shí),取最大值64.,2等比數(shù)列的判定與證明),2)已知數(shù)列an的前n項(xiàng)和為Sn,3Snan1(nN*)(1) 求a1,a2;(2) 求證:數(shù)列an是等比數(shù)列;(3) 求an和Sn.(1) 解:由3S1a11,得3a1a11,所以a1.又3S2a21,即3a13a2a21,得a2.(2) 證明:當(dāng)n2時(shí),anSnSn1(an1)(an11),得,所以an是首項(xiàng)為,公比為的等比數(shù)列(3) 解:由(2)可得ann,Sn.已知數(shù)列an的前n項(xiàng)和為Sn,且Sn4an3(nN*)(1) 求證:數(shù)列an是等比數(shù)列;(2) 若數(shù)列bn滿足bn1anbn(nN*),且b12,求數(shù)列bn的通項(xiàng)公式(1) 證明:依題意Sn4an3(nN*),當(dāng)n1時(shí),a14a13,解得a11.因?yàn)镾n4an3,則Sn14an13(n2),所以當(dāng)n2時(shí),anSnSn14an4an1,整理得anan1.又a110,所以an是首項(xiàng)為1,公比為的等比數(shù)列(2) 解:由(1)知an,由bn1anbn(nN*),得bn1bn.可得bnb1(b2b1)(b3b2)(bnbn1)23·1(n2)當(dāng)n1時(shí)也滿足,所以數(shù)列bn的通項(xiàng)公式為bn3·1(nN*),3等比數(shù)列的性質(zhì)),3)已知等比數(shù)列an的各項(xiàng)均為正數(shù),且滿足a1a94,則數(shù)列l(wèi)og2an的前9項(xiàng)之和為_(kāi)答案:9解析: a1a9a4, a52, log2a1log2a2log2a9log2(a1a2a9)log2a9log2a59.變式訓(xùn)練(1) 各項(xiàng)均為正數(shù)的等比數(shù)列an的前n項(xiàng)和為Sn,若S102,S3014,則S40_;(2) 等比數(shù)列am的前n項(xiàng)積為Tn(nN*),已知am1am12am0,且T2m1128,則m_答案:(1) 30(2) 4解析:(1) 依題意有S10,S20S10,S30S20,S40S30仍成等比數(shù)列,2·(14S20)(S202)2,得S206.所以S10,S20S10,S30S20,S40S30,即為2,4,8,16,所以S40S301630.(2) 因?yàn)閍m為等比數(shù)列,所以am1·am1a.又由am1·am12am0,得am2.則T2m1a,所以22m1128,m4.,4等比數(shù)列的應(yīng)用),4)設(shè)數(shù)列an的前n項(xiàng)和為Sn,已知a11,Sn14an2.(1) 設(shè)bnan12an,求證:數(shù)列bn是等比數(shù)列;(2) 求數(shù)列an的通項(xiàng)公式(1) 證明: 由a11及Sn14an2,得a1a2S24a12. a25, b1a22a13.又,得an14an4an1, an12an2(an2an1) bnan12an, bn2bn1,故bn是首項(xiàng)b13,公比為2的等比數(shù)列(2) 解:由(1)知bnan12an3·2n1, .故是首項(xiàng)為,公差為的等差數(shù)列 (n1)·,故an(3n1)·2n2.已知數(shù)列an的前n項(xiàng)和Sn2n22n,數(shù)列bn的前n項(xiàng)和Tn2bn.(1) 求數(shù)列an與bn的通項(xiàng)公式;(2) 設(shè)cna·bn,證明:當(dāng)且僅當(dāng)n3時(shí),cn1<cn.(1) 解:a1S14,當(dāng)n2時(shí),anSnSn12n(n1)2(n1)n4n.又a14適合上式, an4n(nN*)將n1代入Tn2bn,得b12b1, T1b11.當(dāng)n2時(shí),Tn12bn1,Tn2bn, bnTnTn1bn1bn, bnbn1, bn21n.(2) 證明:(證法1)由cna·bnn2·25n,得.當(dāng)且僅當(dāng)n3時(shí),1<,即cn1<cn.(證法2)由cna·bnn2·25n,得cn1cn24n(n1)22n224n(n1)22當(dāng)且僅當(dāng)n3時(shí),cn1cn<0,即cn1<cn.1. (2017·南京、鹽城二模)記公比為正數(shù)的等比數(shù)列an的前n項(xiàng)和為Sn.若a11,S45S20,則S5的值為_(kāi)答案:31解析:若等比數(shù)列的公比等于1,由a11,得S44,5S210,與題意不符設(shè)等比數(shù)列的公比為q(q1),由a11,S45S2,得5a1(1q),解得q±2. 數(shù)列an的各項(xiàng)均為正數(shù), q2.則S531.2. (2017·蘇北四市三模)在公比為q,且各項(xiàng)均為正數(shù)的等比數(shù)列an中,Sn為an的前n項(xiàng)和若a1,且S5S22,則q的值為_(kāi)答案:解析:由題意可知q1,又S5S22,即2, q32q10, (q1)(q2q1)0.又q>0,且q1, q.3. (2017·蘇錫常鎮(zhèn)二模)已知等比數(shù)列an的前n項(xiàng)和為Sn,公比q3,S3S4,則a3_答案:3解析: 等比數(shù)列an的前n項(xiàng)和為Sn,公比q3,S3S4, ,解得a1.則a3×323.4. (2017·南通四模)已知數(shù)列an中,a11,a24,a310.若an1an是等比數(shù)列,則i_答案:3×2n2n3解析:a2a1413,a3a21046, an1an是等比數(shù)列, 首項(xiàng)為3,公比為2, an1an3×2n1, ana1(a2a1)(a3a2)(anan1)133×23×2n213×3×2n12.則i3×2n3×2n2n3.1. (2017·新課標(biāo))幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開(kāi)發(fā)了一款應(yīng)用軟件為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng)這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一項(xiàng)是20,接下來(lái)的兩項(xiàng)是20,21,再接下來(lái)的三項(xiàng)是20,21,22,依此類推求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪那么該款軟件的激活碼是_答案:440解析:由題意得,數(shù)列如下:1,1,2,1,2,4,1,2,4,2k1,則該數(shù)列的前12k項(xiàng)和為S1(12)(122k1)2k1k2,要使100,有k14,此時(shí)k22k1,所以k2是之后的等比數(shù)列1,2,2k1的部分和,即k2122t12t1,所以k2t314,則t5,此時(shí)k25329,對(duì)應(yīng)滿足的最小條件為N5440.2. 已知數(shù)列an滿足a11,an1,其中nN*,為非零常數(shù)(1) 若3,8,求證:an1為等比數(shù)列,并求數(shù)列an的通項(xiàng)公式;(2) 若數(shù)列an是公差不等于零的等差數(shù)列,求實(shí)數(shù),的值(1) 證明:當(dāng)3,8時(shí),an13an2,化為an113(an1), an1為等比數(shù)列,首項(xiàng)為2,公比為3. an12×3n1,可得an2×3n11.(2) 解:設(shè)ana1(n1)ddnd1.由an1,可得an1(an2)aan4, (dnd3)(dn1)(dnd1)2(dnd1)4.令n1,2,3,解得1,4,d2.經(jīng)過(guò)檢驗(yàn)滿足題意, 1,4.3. 已知各項(xiàng)不為零的數(shù)列an的前n項(xiàng)和為Sn,且a11,Snpanan1(nN*),pR.(1) 若a1,a2,a3成等比數(shù)列,求實(shí)數(shù)p的值;(2) 若a1,a2,a3成等差數(shù)列,求數(shù)列an的通項(xiàng)公式解:(1) 當(dāng)n1時(shí),a1pa1a2,a2;當(dāng)n2時(shí),a1a2pa2a3,a31.由aa1a3得a1a3,即p2p10,解得p.(2) 由2a2a1a3得p,故a22,a33,所以Snanan1,當(dāng)n2時(shí),anSnSn1anan1an1an.因?yàn)閍n0,所以an1an12,故數(shù)列an的所有奇數(shù)項(xiàng)組成以1為首項(xiàng)2為公差的等差數(shù)列,其通項(xiàng)公式是an1×2n.同理,數(shù)列an的所有偶數(shù)項(xiàng)組成以2為首項(xiàng)2為公差的等差數(shù)列,其通項(xiàng)公式是an2×2n,所以數(shù)列an的通項(xiàng)公式是ann.4. 已知數(shù)列an的首項(xiàng)a12a1(a是常數(shù),且a1),an2an1n24n2(n2),數(shù)列bn的首項(xiàng)b1a,bnann2(n2)(1) 求證:bn從第2項(xiàng)起是以2為公比的等比數(shù)列;(2) 設(shè)Sn為數(shù)列bn的前n項(xiàng)和,且Sn是等比數(shù)列,求實(shí)數(shù)a的值;(3) 當(dāng)a>0時(shí),求數(shù)列an的最小項(xiàng)(1) 證明: bnann2, bn1an1(n1)22an(n1)24(n1)2(n1)22an2n22bn(n2)由a12a1,得a24a,b2a244a4. a1, b20,即bn從第2項(xiàng)起是以2為公比的等比數(shù)列(2) 解:由(1)知bnSna3a4(2a2)2n,當(dāng)n2時(shí),2. Sn是等比數(shù)列, (n2)是常數(shù), 3a40,即a.(3) 解:由(1)知當(dāng)n2時(shí),bn(4a4)2n2(a1)2n, an 數(shù)列an為2a1,4a,8a1,16a,32a7,顯然最小項(xiàng)是前三項(xiàng)中的一項(xiàng)當(dāng)a時(shí),最小項(xiàng)為8a1;當(dāng)a時(shí),最小項(xiàng)為4a或8a1;當(dāng)a時(shí),最小項(xiàng)為4a;當(dāng)a時(shí),最小項(xiàng)為4a或2a1;當(dāng)a時(shí),最小項(xiàng)為2a1.1. 重點(diǎn)是本著化多為少的原則,解題時(shí),需抓住首項(xiàng)a1和公比q這兩個(gè)基本量2. 運(yùn)用等比數(shù)列求和公式時(shí),要對(duì)q1和q1進(jìn)行討論3. 解決等比數(shù)列有關(guān)問(wèn)題的常見(jiàn)思想方法:方程的思想:等比數(shù)列中有五個(gè)量a1,q,n,an,Sn,一般可以“知三求二”,通過(guò)列方程組求關(guān)鍵量a1,q.分類的思想:當(dāng)a1>0,q>1或者a1<0,0<q<1時(shí),等比數(shù)列an遞增;當(dāng)a1>0,0<q<1或者a1<0,q>1時(shí),等比數(shù)列an遞減;當(dāng)q<0時(shí),等比數(shù)列為擺動(dòng)數(shù)列;當(dāng)q1時(shí),等比數(shù)列為常數(shù)列函數(shù)的思想:用函數(shù)的觀點(diǎn)來(lái)理解和掌握等比數(shù)列的概念、通項(xiàng)公式和前n項(xiàng)和公式4. 巧用性質(zhì),減少運(yùn)算量,在解題中非常重要第4課時(shí)數(shù)列的求和(對(duì)應(yīng)學(xué)生用書(文)、(理)8889頁(yè))理解數(shù)列的通項(xiàng)公式;會(huì)由數(shù)列的前n項(xiàng)和求數(shù)列通項(xiàng)公式;掌握等差數(shù)列、等比數(shù)列前n項(xiàng)和的公式;數(shù)列求和的常用方法:分組求和法、錯(cuò)位相減法、裂項(xiàng)相消法、倒序相加法等 掌握求數(shù)列通項(xiàng)公式的常用方法. 掌握數(shù)列求和的常用方法1. (必修5P36例2改編)在數(shù)列1,1,2,3,5,8,x,21,34,55中,x_答案:13解析:由an2an1an,得x5813.2. (必修5P68復(fù)習(xí)題13(1)改編)求和:_答案:1解析:原式1.3. (必修5P69本章測(cè)試12改編)等比數(shù)列1,2,4,8,中從第5項(xiàng)到第10項(xiàng)的和為_(kāi)答案:1 008解析:由a11,a22,得q2, S101 023,S415, S10S41 008.4. (必修5P68復(fù)習(xí)題13(2)改編)已知數(shù)列an的通項(xiàng)公式an,則該數(shù)列的前_項(xiàng)之和等于9.答案:99解析:由題意知,an,所以Sn(1)()()19,解得n99.5. (必修5P62習(xí)題12改編)數(shù)列an中,an(2n1)3n1,則數(shù)列an的前n項(xiàng)和Sn_