12、x-1|=|2(x-y-1)+(2y+1)|
≤|2(x-y-1)|+|2y+1|≤2×+=.
考向3 柯西不等式的應(yīng)用
例4 已知a,b,c>0,a+b+c=1.求證:
(1)++≤ ;
(2)++≥.
證明 (1)由柯西不等式得(++)2=(1·+1·+1·)2≤(12+12+
12)[()2+()2+()2]=3,當且僅當==,即a=b=c=時等號成立,∴++≤ .
(2)證法一:∵+(3a+1)≥2=4,∴≥3-3a.
同理得≥3-3b,≥3-3c,
以上三式相加得,4≥9-3(a+b+c)=
6,
∴++≥.
證法二:由柯西不等式得[(3a+1)+(3b+
13、1)+(3c+1)]≥+·+·2=9,
又a+b+c=1,∴6≥9,
∴++≥.
柯西不等式的應(yīng)用方法
(1)使用柯西不等式證明的關(guān)鍵是恰當變形,化為符合它的結(jié)構(gòu)形式,當一個式子與柯西不等式的左邊或右邊具有一致形式時,就可使用柯西不等式進行證明.
(2)利用柯西不等式求最值的一般結(jié)構(gòu)為(a+a+…+a)≥(1+1+…+1)2=n2.在使用柯西不等式時,要注意右邊為常數(shù)且應(yīng)注意等號成立的條件.
(2019·南通市高三下學(xué)期模擬)已知a,b,c均為正數(shù),且a+2b+4c=3,求++的最小值,并指出取得最小值時a,b,c的值.
解 因為a+2b+4c=3,所以(a+1)+2(b
14、+1)+4(c+1)=10,
因為a,b,c為正數(shù),所以由柯西不等式得,
[(a+1)+2(b+1)+4(c+1)]·≥(1++2)2,
當且僅當(a+1)2=2(b+1)2=4(c+1)2等式成立,
所以++≥,
所以++的最小值是,
此時a=,b=,c=.
真題押題
『真題模擬』
1.(2019·哈爾濱市第六中學(xué)高三第二次模擬)設(shè)函數(shù)f(x)=|2x-1|+2|x+1|-a.
(1)當a=4時,求不等式f(x)>0的解集;
(2)若函數(shù)f(x)的定義域為R,求a的取值范圍.
解 (1)當a=4時,f(x)>0為|2x-1|+2|x+1|>4,
當x≤-1時,1-2
15、x-2x-2>4?x<-;
當-14,無解;
當x≥時,2x-1+2x+2>4?x>.
綜上,f(x)>0的解集為∪.
(2)由題意得|2x-1|+2|x+1|>a恒成立,
a<(|2x-1|+2|x+1|)min.
|2x-1|+2|x+1|=|2x-1|+|2x+2|≥|(2x-1)-(2x+2)|=3,∴a<3.
2.(2019·赤峰市高三模擬)已知函數(shù)f(x)=|x+1|+|x-1|,g(x)=x2-2x-1.
(1)若m,n∈R,不等式f(m)≥g(n)恒成立,求實數(shù)n的取值范圍;
(2)設(shè)a>0,b>0,且a+b=2,求證:+≤2.
16、
解 (1)由f(m)=|m-1|+|m+1|≥|(m-1)-(m+1)|=2,
∴f(m)min=2,∴n2-2n-1≤2,∴-1≤n≤3,
所以n的取值范圍是[-1,3].
(2)證明:由(1)可知,2≥2,∴(+)2=a+b+2+2≤4+(a+1)+(b+1)=8,
∴+≤2,
當且僅當a=b=1時等號成立,
∴+≤2.
3.(2019·全國卷Ⅰ)已知a,b,c為正數(shù),且滿足abc=1.
證明:(1)++≤a2+b2+c2;
(2)(a+b)3+(b+c)3+(c+a)3≥24.
證明 (1)因為a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又abc=1
17、,故有a2+b2+c2≥ab+bc+ca==++.
當且僅當a=b=c=1時,等號成立.
所以++≤a2+b2+c2.
(2)因為a,b,c為正數(shù)且abc=1,
故有(a+b)3+(b+c)3+(c+a)3
≥3=3(a+b)(b+c)(c+a)
≥3×(2)×(2)×(2)=24.
當且僅當a=b=c=1時,等號成立.
所以(a+b)3+(b+c)3+(c+a)3≥24.
『金版押題』
4.已知函數(shù)f(x)=|2x-3|-|x+1|.
(1)若不等式f(x)≤a的解集是空集,求實數(shù)a的取值范圍;
(2)若存在x0∈R,使得2f(x0)≤-t2+4|t|成立,求實數(shù)t的
18、取值范圍.
解 (1)f(x)=|2x-3|-|x+1|
=y(tǒng)=f(x)的圖象如圖所示,
易得f(x)min=-.
∵不等式f(x)≤a的解集是空集,
∴a的取值范圍為.
(2)?x0∈R,使得2f(x0)≤-t2+4|t|成立,
即2f(x)min≤-t2+4|t|,由(1)知f(x)min=-,
∴t2-4|t|-5≤0,解得-5≤t≤5,
∴t的取值范圍為[-5,5].
配套作業(yè)
1.(2019·西安八校高三聯(lián)考)已知a,b均為實數(shù),且|3a+4b|=10.
(1)求a2+b2的最小值;
(2)若|x+3|-|x-2|≤a2+b2對任意的a,b∈R恒成立,求
19、實數(shù)x的取值范圍.
解 (1)因為102=(3a+4b)2≤(32+42)(a2+b2)=25(a2+b2),
所以a2+b2≥4,當且僅當=,
即或時取等號,
即a2+b2的最小值為4.
(2)由(1)知|x+3|-|x-2|≤a2+b2對任意的a,b∈R恒成立?|x+3|-|x-2|≤4?或或?x<-3或-3≤x≤?x≤,所以實數(shù)x的取值范圍為.
2.已知函數(shù)f(x)=|2x-a|+|x-1|.
(1)當a=3時,求不等式f(x)≥2的解集;
(2)若f(x)≥5-x對任意x∈R恒成立,求實數(shù)a的取值范圍.
解 (1)當a=3時,即求解|2x-3|+|x-1|≥2,
①
20、當x≥時,2x-3+x-1≥2,∴x≥2;
②當1
21、min=-3,∴m≥-3,
即m的取值范圍為[-3,+∞).
(2)x2-8x+15+f(x)=
①x≤2,x2-8x+18≤0,解集為?.
②20,所以x不存在;
當0≤x<時,原不等式可化為-2x-x<0,
解
22、得x>0,所以02x成立,求a的取值范圍.
解 (1)
23、當a=1時,
f(x)=|2x+1|-|x-1|=
由f(x)≤2,得或
或
解得x∈?或-≤x≤或-4≤x<-,
所以不等式f(x)≤2的解集為.
(2)當x∈時,不等式f(x)>2x等價于2x+1-|ax-1|>2x,即|ax-1|<1,
所以-1
24、(1)當m=-1時,f(x)+f(-x)=|x+1|+|x-1|,
設(shè)F(x)=|x+1|+|x-1|=
當x<-1時,-2x≥2-x,解得x≤-2;
當-1≤x<1時,2≥2-x,解得0≤x<1;
當x≥1時,2x≥2-x,解得x≥1.
綜上,原不等式的解集為{x|x≤-2或x≥0}.
(2)f(x)+f(2x)=|x-m|+|2x-m|,m<0.
設(shè)g(x)=f(x)+f(2x),
當x≤m時,g(x)=m-x+m-2x=2m-3x,則g(x)≥-m;
當m
25、m,
則g(x)≥-.則g(x)的值域為,
由題知不等式f(x)+f(2x)<1的解集非空,則1>-,解得m>-2,由于m<0,
故m的取值范圍是(-2,0).
7.(2019·寶雞市高考模擬)已知函數(shù)f(x)=|x-2|-|x+3|.
(1)求不等式f(x)≤2的解集;
(2)若不等式f(x)2,
所以不等式f(x)≤2的解集為.
(2)因為|f(x)|=||x-2|-|x+3||≤|x-2-x-3|=5,
所以-5≤f(x)≤
26、5,即f(x)min=-5;
要使不等式f(x)0,解得a<-5或a>-1,
所以a的取值范圍為(-∞,-5)∪(-1,+∞).
8.(2019·太原市高三模擬)已知函數(shù)f(x)=|2x-1|+2|x+1|.
(1)求不等式f(x)≤5的解集;
(2)若存在實數(shù)x0,使得f(x0)≤5+m-m2成立的m的最大值為M,且實數(shù)a,b滿足a3+b3=M,證明:00,
∵2ab≤a2+b2,∴4ab≤(a+b)2,∴ab≤,
∵2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]≥(a+b)3,
∴a+b≤2,∴0