高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題增分專(zhuān)項(xiàng)6 高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例課件
《高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題增分專(zhuān)項(xiàng)6 高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例課件》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題增分專(zhuān)項(xiàng)6 高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例課件(45頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高考大題增分專(zhuān)項(xiàng)六高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例考情分析典例突破-2-2-2-2-從近五年的高考試題來(lái)看,在高考的解答題中,對(duì)概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例的考查主要有三個(gè)方面:一是統(tǒng)計(jì)與統(tǒng)計(jì)案例,以實(shí)際生活中的事例為背景,通過(guò)對(duì)相關(guān)數(shù)據(jù)的統(tǒng)計(jì)分析、抽象概括,作出估計(jì)、判斷,其中回歸分析、獨(dú)立性檢驗(yàn)、用樣本的數(shù)據(jù)特征估計(jì)總體的數(shù)據(jù)特征是考查重點(diǎn),常與抽樣方法、莖葉圖、頻率分布直方圖、概率等知識(shí)交匯考查;二是統(tǒng)計(jì)與概率綜合,以現(xiàn)實(shí)生活為背景,利用頻率估計(jì)概率,常與抽樣方法、莖葉圖、頻率分布直方圖、概率等知識(shí)交匯考查;三是古典概型的綜合應(yīng)用,以現(xiàn)實(shí)生活為背景,求某些事件發(fā)生的概率,常與抽樣方法、莖葉圖等統(tǒng)計(jì)知
2、識(shí)交匯考查.考情分析典例突破-3-3-3-3-題型一題型二題型三題型四題型五已知樣本的頻率分布表或樣本的頻率分布直方圖,求樣本的中位數(shù)、平均數(shù)、方差、標(biāo)準(zhǔn)差等數(shù)字特征.由于每個(gè)樣本的具體值不知道,只知道各區(qū)間上的端點(diǎn)值,這時(shí)取區(qū)間兩端數(shù)據(jù)的平均值作為樣本的具體值,求樣本的數(shù)字特征.考情分析典例突破-4-4-4-4-題型一題型二題型三題型四題型五例1我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查.通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照0,0.5),0.5,1),4,4.5分成9組,制成了如圖所示的頻率分布直方圖.考情分析典例突破
3、-5-5-5-5-題型一題型二題型三題型四題型五(1)求直方圖中a的值;(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由;(3)估計(jì)居民月均用水量的中位數(shù).解(1)由頻率分布直方圖,可知月均用水量在0,0.5)的頻率為0.080.5=0.04.同理,在0.5,1),1.5,2),2,2.5),3,3.5),3.5,4),4,4.5)等組的頻率分別為0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5a+0.5a,解得a=0.30.考情分析典例突破-6-6-6-6-題型一題型
4、二題型三題型四題型五(2)由(1),100位居民月均用水量不低于3噸的頻率為0.06+0.04+0.02=0.12.由以上樣本的頻率分布,可以估計(jì)30萬(wàn)居民中月均用水量不低于3噸的人數(shù)為300 0000.12=36 000.(3)設(shè)中位數(shù)為x噸.因?yàn)榍?組的頻率之和為0.04+0.08+0.15+0.21+0.25=0.730.5,而前4組的頻率之和為0.04+0.08+0.15+0.21=0.480.5,所以2x2.5.由0.50(x-2)=0.5-0.48,解得x=2.04.故可估計(jì)居民月均用水量的中位數(shù)為2.04噸.考情分析典例突破-7-7-7-7-題型一題型二題型三題型四題型五對(duì)點(diǎn)訓(xùn)練
5、對(duì)點(diǎn)訓(xùn)練1從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:考情分析典例突破-8-8-8-8-題型一題型二題型三題型四題型五(1)作出這些數(shù)據(jù)的頻率分布直方圖;(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?考情分析典例突破-9-9-9-9-題型一題型二題型三題型四題型五解 (1) 考情分析典例突破-10-10-10-10-題型一題型二題型三題型四題型五(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為 =800
6、.06+900.26+1000.38+1100.22+1200.08=100.質(zhì)量指標(biāo)值的樣本方差為s2=(-20)20.06+(-10)20.26+00.38+1020.22+2020.08=104.所以這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)的估計(jì)值為100,方差的估計(jì)值為104.(3)質(zhì)量指標(biāo)值不低于95的產(chǎn)品所占比例的估計(jì)值為0.38+0.22+0.08=0.68.由于該估計(jì)值小于0.8,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定.考情分析典例突破-11-11-11-11-題型一題型二題型三題型四題型五考情分析典例突破-12-12-12-12-題型一
7、題型二題型三題型四題型五例2某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷(xiāo)售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)xi和年銷(xiāo)售量yi(i=1,2,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.考情分析典例突破-13-13-13-13-題型一題型二題型三題型四題型五(1)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d 哪一個(gè)適宜作為年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)
8、的結(jié)果回答下列問(wèn)題:當(dāng)年宣傳費(fèi)x=49時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?考情分析典例突破-14-14-14-14-題型一題型二題型三題型四題型五考情分析典例突破-15-15-15-15-題型一題型二題型三題型四題型五考情分析典例突破-16-16-16-16-題型一題型二題型三題型四題型五對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練2(2017湖北武漢五月調(diào)考)據(jù)某市地產(chǎn)數(shù)據(jù)研究顯示,2016年該市新建住宅銷(xiāo)售均價(jià)走勢(shì)如圖所示,3月至7月房?jī)r(jià)上漲過(guò)快,為抑制房?jī)r(jià)過(guò)快上漲,政府從8月開(kāi)始采用宏觀調(diào)控措施,10月份開(kāi)始房?jī)r(jià)得到很好的抑制.(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(jià)
9、y(萬(wàn)元/平方米)與月份x之間具有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程;(2)若政府不調(diào)控,依此相關(guān)關(guān)系預(yù)測(cè)第12月份該市新建住宅銷(xiāo)售均價(jià).考情分析典例突破-17-17-17-17-題型一題型二題型三題型四題型五考情分析典例突破-18-18-18-18-題型一題型二題型三題型四題型五在統(tǒng)計(jì)中,一般通過(guò)計(jì)算現(xiàn)實(shí)生活中某事件的頻率,從而用來(lái)估計(jì)事件的概率,然后用概率來(lái)解決其他相關(guān)問(wèn)題.考情分析典例突破-19-19-19-19-題型一題型二題型三題型四題型五例3(2017全國(guó),文19)海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(
10、單位:kg),其頻率分布直方圖如下:舊養(yǎng)殖法 新養(yǎng)殖法 考情分析典例突破-20-20-20-20-題型一題型二題型三題型四題型五(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.附:考情分析典例突破-21-21-21-21-題型一題型二題型三題型四題型五解:(1)舊養(yǎng)殖法的箱產(chǎn)量低于50 kg的頻率為(0.012+0.014+0.024+0.034+0.040)5=0.62.因此,事件A的概率估計(jì)值為0.62.(2)根據(jù)箱產(chǎn)量的頻
11、率分布直方圖得列聯(lián)表考情分析典例突破-22-22-22-22-題型一題型二題型三題型四題型五(3)箱產(chǎn)量的頻率分布直方圖表明:新養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在50 kg到55 kg之間,舊養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在45 kg到50 kg之間,且新養(yǎng)殖法的箱產(chǎn)量分布集中程度較舊養(yǎng)殖法的箱產(chǎn)量分布集中程度高,因此,可以認(rèn)為新養(yǎng)殖法的箱產(chǎn)量較高且穩(wěn)定,從而新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.考情分析典例突破-23-23-23-23-題型一題型二題型三題型四題型五對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練3(2017北京,文17)某大學(xué)藝術(shù)專(zhuān)業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100
12、名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:20,30),30,40),80,90,并整理得到如下頻率分布直方圖:考情分析典例突破-24-24-24-24-題型一題型二題型三題型四題型五(1)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間40,50)內(nèi)的人數(shù);(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例. 解: (1)根據(jù)頻率分布直方圖可知,樣本中分?jǐn)?shù)不小于70的頻率為(0.02+0.04)10=0.6,所以樣本中分?jǐn)?shù)小于70的頻率為1-0.6=0
13、.4.所以從總體的400名學(xué)生中隨機(jī)抽取一人,其分?jǐn)?shù)小于70的概率估計(jì)為0.4.考情分析典例突破-25-25-25-25-題型一題型二題型三題型四題型五(2)根據(jù)題意,樣本中分?jǐn)?shù)不小于50的頻率為(0.01+0.02+0.04+0.02)10=0.9,分?jǐn)?shù)在區(qū)間40,50)內(nèi)的人數(shù)為100-1000.9-5=5.所以總體中分?jǐn)?shù)在區(qū)間40,50)內(nèi)的人數(shù)估計(jì)為(3)由題意可知,樣本中分?jǐn)?shù)不小于70的學(xué)生人數(shù)為(0.02+0.04)10100=60,所以樣本中分?jǐn)?shù)不小于70的男生人數(shù)為60 =30.所以樣本中的男生人數(shù)為302=60,女生人數(shù)為100-60=40,男生和女生人數(shù)的比例為6040=3
14、2.所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計(jì)為32.考情分析典例突破-26-26-26-26-題型一題型二題型三題型四題型五在求古典概型的概率時(shí),常常應(yīng)用列舉法找出基本事件數(shù)及所求事件包含基本事件數(shù).列舉的方法通常有直接分類(lèi)列舉、列表、樹(shù)狀圖等.考情分析典例突破-27-27-27-27-題型一題型二題型三題型四題型五例4襄陽(yáng)市某優(yōu)質(zhì)高中為了選拔學(xué)生參加“全國(guó)中學(xué)生英語(yǔ)能力競(jìng)賽(NEPCS)”,先在本校進(jìn)行初賽(滿(mǎn)分150分),若該校有100名學(xué)生參加初賽,并根據(jù)初賽成績(jī)得到如圖所示的頻率分布直方圖.(1)根據(jù)頻率分布直方圖,計(jì)算這100名學(xué)生參加初賽成績(jī)的中位數(shù);(2)該校推薦初賽
15、成績(jī)?cè)?10分以上的學(xué)生代表學(xué)校參加競(jìng)賽,為了了解情況,在該校推薦參加競(jìng)賽的學(xué)生中隨機(jī)抽取2人,求選取的2人的初賽成績(jī)?cè)陬l率分布直方圖中處于不同組的概率.考情分析典例突破-28-28-28-28-題型一題型二題型三題型四題型五解(1)設(shè)初賽成績(jī)的中位數(shù)為x,則(0.001+0.004+0.009)20+0.02(x-70)=0.5,解得x=81,故初賽成績(jī)的中位數(shù)為81.(2)該校學(xué)生的初賽分?jǐn)?shù)在110,130)有0.00220100=4(人),分別記為A,B,C,D;分?jǐn)?shù)在130,150有0.00120100=2(人),分別記為a,b.在這6人中隨機(jī)選取2人,總的基本事件有(A,B),(A,
16、C),(A,D),(A,a),(A,b),(B,C),(B,D),(B,a),(B,b),(C,D),(C,a),(C,b),(D,a),(D,b),(a,b)共15個(gè),其中符合題設(shè)條件的基本事件有8個(gè).故選取的2人的初賽成績(jī)?cè)陬l率分布直方圖中處于不同組的概率為考情分析典例突破-29-29-29-29-題型一題型二題型三題型四題型五對(duì)點(diǎn)對(duì)點(diǎn)訓(xùn)練訓(xùn)練4某工廠對(duì)一批共50件的機(jī)器零件進(jìn)行分類(lèi)檢測(cè),其質(zhì)量(單位:g)統(tǒng)計(jì)如下:規(guī)定質(zhì)量在82g及以下的為甲型,已知該批零件有甲型2件.(1)從該批零件中任選1件,若選出的零件質(zhì)量在95,100內(nèi)的概率為0.26,求m的值;(2)從質(zhì)量在80,85)內(nèi)的5
17、件零件中,任選2件,求其中恰有1件為甲型的概率.考情分析典例突破-30-30-30-30-題型一題型二題型三題型四題型五解 (1)因?yàn)閺脑撆慵腥芜x1件,選出的零件質(zhì)量在95,100內(nèi)的概率為0.26,所以n=500.26=13,所以m=50-5-12-13=20.(2)質(zhì)量在80,85)內(nèi)的5件零件中,甲型有2件,分別記作a,b;剩下的3件分別記作c,d,e.從質(zhì)量在80,85)內(nèi)的5件零件中,任選2件,總的基本事件為ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10種,其中恰有1件為甲型包含的基本事件個(gè)數(shù)為6,考情分析典例突破-31-31-31-31-題型一題型二題型三題
18、型四題型五需要代入的量比較多,且公式中兩類(lèi)數(shù)據(jù)錯(cuò)綜復(fù)雜,容易代錯(cuò),因此先運(yùn)用列表法列出需要的數(shù)據(jù),并對(duì)數(shù)據(jù)依據(jù)公式進(jìn)行合并,減少了代入公式量的個(gè)數(shù),再代入公式求解運(yùn)算的準(zhǔn)確性高.考情分析典例突破-32-32-32-32-題型一題型二題型三題型四題型五例5某工廠有25周歲及以上的工人300名,25周歲以下的工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲及以上”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:50,60),60,70),70,80),80,90),90
19、,100分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.25周歲及以上組25周歲以下組考情分析典例突破-33-33-33-33-題型一題型二題型三題型四題型五(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成22列聯(lián)表,并判斷能否認(rèn)為生產(chǎn)能手與工人所在的年齡組無(wú)關(guān).考情分析典例突破-34-34-34-34-題型一題型二題型三題型四題型五解(1)由已知得,樣本中有25周歲及以上組工人60名,25周歲以下組工人40名.所以,樣本中日平均生產(chǎn)件數(shù)不足60件的工人中,25周歲以上
20、組工人有600.05=3(人),記為A1,A2,A3;25周歲以下組工人有400.05=2(人),記為B1,B2.從中隨機(jī)抽取2名工人,所有的可能結(jié)果共有10種,它們是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周歲以下組”工人的可能結(jié)果共有7種,它們是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率考情分析典例突破-35-35-35-35-題型一題型二題型三題型四題型五(2)由
21、頻率分布直方圖可知,在抽取的100名工人中,“25周歲及以上組”中的生產(chǎn)能手有600.25=15(人),“25周歲以下組”中的生產(chǎn)能手有400.375=15(人),據(jù)此可得22列聯(lián)表如下:所以得因?yàn)?.793.841,所以可以認(rèn)為生產(chǎn)能手與工人所在的年齡組無(wú)關(guān).考情分析典例突破-36-36-36-36-題型一題型二題型三題型四題型五在獨(dú)立性檢驗(yàn)中,應(yīng)用公式 需要代入的量比較多,且公式中兩類(lèi)數(shù)據(jù)錯(cuò)綜復(fù)雜,容易代錯(cuò),因此先運(yùn)用列表法列出需要的數(shù)據(jù),并對(duì)數(shù)據(jù)依據(jù)公式進(jìn)行合并,減少了代入公式量的個(gè)數(shù),再代入公式求解運(yùn)算的準(zhǔn)確性高.考情分析典例突破-37-37-37-37-題型一題型二題型三題型四題型五
22、例5某工廠有25周歲及以上的工人300名,25周歲以下的工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲及以上”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:50,60),60,70),70,80),80,90),90,100分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.考情分析典例突破-38-38-38-38-題型一題型二題型三題型四題型五25周歲及以上組 25周歲以下組 考情分析典例突破-39-39-39-39-題型一題型二題型三題型四題型五(1)從樣本中日平均
23、生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成22列聯(lián)表,并判斷能否認(rèn)為生產(chǎn)能手與工人所在的年齡組無(wú)關(guān).考情分析典例突破-40-40-40-40-題型一題型二題型三題型四題型五解:(1)由已知得,樣本中有25周歲及以上組工人60名,25周歲以下組工人40名.所以,樣本中日平均生產(chǎn)件數(shù)不足60件的工人中,25周歲以上組工人有600.05=3(人),記為A1,A2,A3;25周歲以下組工人有400.05=2(人),記為B1,B2.從中隨機(jī)抽取2名工人,所有的可能結(jié)果共有10種,它們是:(
24、A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周歲以下組”工人的可能結(jié)果共有7種,它們是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率考情分析典例突破-41-41-41-41-題型一題型二題型三題型四題型五(2)由頻率分布直方圖可知,在抽取的100名工人中,“25周歲及以上組”中的生產(chǎn)能手有600.25=15(人),“25周歲以下組”中的生產(chǎn)能手有400.375=15(人),據(jù)此可得
25、22列聯(lián)表如下:所以得因?yàn)?.793.841,所以可以認(rèn)為生產(chǎn)能手與工人所在的年齡組無(wú)關(guān).考情分析典例突破-42-42-42-42-題型一題型二題型三題型四題型五對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練5(2017湖南長(zhǎng)沙一模)某研究型學(xué)習(xí)小組調(diào)查研究“中學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響”,部分統(tǒng)計(jì)數(shù)據(jù)如下表:考情分析典例突破-43-43-43-43-題型一題型二題型三題型四題型五(1)試根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)有影響?(2)研究小組將該樣本中使用智能手機(jī)且成績(jī)優(yōu)秀的4名同學(xué)記為A組,不使用智能手機(jī)且成績(jī)優(yōu)秀的8名同學(xué)記為B組,計(jì)劃從A組推選的2人和B組推選的3人中,隨
26、機(jī)挑選兩人在學(xué)校升旗儀式上作“國(guó)旗下講話(huà)”分享學(xué)習(xí)經(jīng)驗(yàn),求挑選的兩人恰好分別來(lái)自A,B兩組的概率.考情分析典例突破-44-44-44-44-題型一題型二題型三題型四題型五因?yàn)?.6352,所以該研究小組有99%的把握認(rèn)為中學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)有影響.(2)記A組推選的兩名同學(xué)為a1,a2,B組推選的三名同學(xué)為b1,b2,b3,則從中隨機(jī)選出兩名同學(xué)包含如下10個(gè)基本事件:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3),記挑選的兩人恰好分別來(lái)自A,B兩組為事件Z,則事件Z包含如下6個(gè)基本事件:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),專(zhuān)題總結(jié)-45-解決概率與統(tǒng)計(jì)相結(jié)合的綜合問(wèn)題,讀懂題意是關(guān)鍵,首先能從題目的統(tǒng)計(jì)背景中抽取有關(guān)概率的相關(guān)信息,然后將信息轉(zhuǎn)化為概率試驗(yàn)中的基本關(guān)系,按照求某事件概率的方法,計(jì)算試驗(yàn)的基本事件數(shù)和所求事件包含的基本事件數(shù),最后依據(jù)古典概型或幾何概型的概率公式求解.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第7課時(shí)圖形的位置練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第1課時(shí)圖形的認(rèn)識(shí)與測(cè)量1平面圖形的認(rèn)識(shí)練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時(shí)比和比例2作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)4比例1比例的意義和基本性質(zhì)第3課時(shí)解比例練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第7課時(shí)圓柱的體積3作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)1負(fù)數(shù)第1課時(shí)負(fù)數(shù)的初步認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末豐收?qǐng)@作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十二課件新人教版
- 標(biāo)準(zhǔn)工時(shí)講義
- 2021年一年級(jí)語(yǔ)文上冊(cè)第六單元知識(shí)要點(diǎn)習(xí)題課件新人教版
- 2022春一年級(jí)語(yǔ)文下冊(cè)課文5識(shí)字測(cè)評(píng)習(xí)題課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時(shí)數(shù)學(xué)思考1練習(xí)課件新人教版