2018年高考數(shù)學(xué) 專題42 巧解圓錐曲線中的定點(diǎn)和定值問(wèn)題解題模板
《2018年高考數(shù)學(xué) 專題42 巧解圓錐曲線中的定點(diǎn)和定值問(wèn)題解題模板》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年高考數(shù)學(xué) 專題42 巧解圓錐曲線中的定點(diǎn)和定值問(wèn)題解題模板(44頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 專題42 巧解圓錐曲線中的定點(diǎn)和定值問(wèn)題 【高考地位】 圓錐曲線是解析幾何的重要內(nèi)容之一,也是高考重點(diǎn)考查的內(nèi)容和熱點(diǎn),知識(shí)綜合性較強(qiáng),對(duì)學(xué)生邏輯思維能力計(jì)算能力等要求很高,這些問(wèn)題重點(diǎn)考查學(xué)生方程思想、函數(shù)思想、轉(zhuǎn)化與化歸思想的應(yīng)用.定值問(wèn)題與定點(diǎn)問(wèn)題是這類題目的典型代表,為了提高同學(xué)們解題效率,特別是高考備考效率,本文列舉了一些典型的定點(diǎn)和定值問(wèn)題,以起到拋磚引乇的作用. 【方法點(diǎn)評(píng)】 方法一 定點(diǎn)問(wèn)題 求解直線和曲線過(guò)定點(diǎn)問(wèn)題的基本解題模板是:把直線或曲線方程中的變量x,y當(dāng)作常數(shù)看待,把方程一端化為零,既然是過(guò)定點(diǎn),那么這個(gè)方程就要對(duì)任意參數(shù)都成立,這時(shí)參數(shù)的系數(shù)就要全
2、部等于零,這樣就得到一個(gè)關(guān)于x,y的方程組,這個(gè)方程組的解所確定的點(diǎn)就是直線或曲線所過(guò)的定點(diǎn),或者可以通過(guò)特例探求,再用一般化方法證明. 【例1】已知橢圓的左右焦點(diǎn)分別為,橢圓過(guò)點(diǎn),直線 交軸于,且為坐標(biāo)原點(diǎn). (1)求橢圓的方程; (2)設(shè)是橢圓上的頂點(diǎn),過(guò)點(diǎn)分別作出直線交橢圓于兩點(diǎn),設(shè)這兩條直線的斜率 分別為,且,證明:直線過(guò)定點(diǎn). 【答案】(1);(2)證明見(jiàn)解析. 考點(diǎn):直線與圓錐曲線位置關(guān)系. 【方法點(diǎn)晴】求曲線方程主要方法是方程的思想,將向量的條件轉(zhuǎn)化為垂直.直線和圓錐曲線的位置關(guān)系一方面要體現(xiàn)方程思想,另一方面要結(jié)合已知條件,從圖形角度求解.聯(lián)立直線與圓錐曲
3、線的方程得到方程組,化為一元二次方程后由根與系數(shù)的關(guān)系求解是一個(gè)常用的方法. 涉及弦長(zhǎng)的問(wèn)題中,應(yīng)熟練地利用根與系數(shù)關(guān)系、設(shè)而不求法計(jì)算弦長(zhǎng);涉及垂直關(guān)系時(shí)也往往利用根與系數(shù)關(guān)系、設(shè)而不求法簡(jiǎn)化運(yùn)算;涉及過(guò)焦點(diǎn)的弦的問(wèn)題,可考慮用圓錐曲線的定義求解. 【變式演練1】【2018貴州省遵義市模擬】已知點(diǎn)P是圓F1:(x﹣1)2+y2=8上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱,線段PF2的垂直平分線分別與PF1,PF2交于M,N兩點(diǎn). (1)求點(diǎn)M的軌跡C的方程; (2)過(guò)點(diǎn)G(0, )的動(dòng)直線l與點(diǎn)的軌跡C交于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)Q,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出點(diǎn)Q
4、的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由. 【解析】(1)由圓F1:(x﹣1)2+y2=8,得F1(1,0),則F2(﹣1,0), 由題意得 , ∴點(diǎn)M的軌跡C為以F1,F(xiàn)2為焦點(diǎn)的橢圓, ∵ ∴點(diǎn)M的軌跡C的方程為; 方法二 定值問(wèn)題 解析幾何中的定值問(wèn)題是指某些幾何量(線段的長(zhǎng)度、圖形的面積、角的度數(shù)、直線的斜率等)的大小或某些代數(shù)表達(dá)式的值等和題目中的參數(shù)無(wú)關(guān),不依參數(shù)的變化而變化,而始終是一個(gè)確定的值,求定值問(wèn)題常見(jiàn)的解題模板有兩種: ①?gòu)奶厥馊胧?,求出定值,再證明這個(gè)值與變量無(wú)關(guān); ②直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值. 【例2】已知拋物線,
5、直線與交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn). (1)求拋物線的方程; (2)已知點(diǎn)的坐標(biāo)為(-3,0),記直線、的斜率分別為,,證明:為定值. 【答案】(1);(2)詳見(jiàn)解析 考點(diǎn):1.拋物線方程;2.直線與拋物線的位置關(guān)系. 【變式演練2】【2018河南鄭州市第一中學(xué)模擬】設(shè), 是橢圓上的兩點(diǎn),橢圓的離心率為,短軸長(zhǎng)為2,已知向量, ,且, 為坐標(biāo)原點(diǎn). (1)若直線過(guò)橢圓的焦點(diǎn),( 為半焦距),求直線的斜率的值; (2)試問(wèn): 的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由. 【解析】(1)由題可得: , ,所以,橢圓的方程為 設(shè)的方程為: ,代入得:
6、∴, , ∵,∴,即: 即,解得: 點(diǎn)睛:本題主要考查直線與圓錐曲線的位置關(guān)系、圓錐曲線的定值問(wèn)題,解題時(shí)要注意解題技巧的運(yùn)用,如常用的設(shè)而不求,整體代換的方法;探索圓錐曲線的定值問(wèn)題常見(jiàn)方法有兩種:①?gòu)奶厥馊胧?,先根?jù)特殊位置和數(shù)值求出定值,再證明這個(gè)這個(gè)值與變量無(wú)關(guān);②直接推理、計(jì)算,借助韋達(dá)定理,結(jié)合向量所提供的坐標(biāo)關(guān)系,然后經(jīng)過(guò)計(jì)算推理過(guò)程中消去變量,從而得到定值. 【高考再現(xiàn)】 1. 【2017課標(biāo)1,理20】已知橢圓C:(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三點(diǎn)在橢圓C上. (1)求C的方程; (2)設(shè)直
7、線l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過(guò)定點(diǎn). 【考點(diǎn)】橢圓的標(biāo)準(zhǔn)方程,直線與圓錐曲線的位置關(guān)系. 【名師點(diǎn)睛】橢圓的對(duì)稱性是橢圓的一個(gè)重要性質(zhì),判斷點(diǎn)是否在橢圓上,可以通過(guò)這一方法進(jìn)行判斷;證明直線過(guò)定點(diǎn)的關(guān)鍵是設(shè)出直線方程,通過(guò)一定關(guān)系轉(zhuǎn)化,找出兩個(gè)參數(shù)之間的關(guān)系式,從而可以判斷過(guò)定點(diǎn)情況.另外,在設(shè)直線方程之前,若題設(shè)中為告知,則一定要討論直線斜率不存在和存在情況,接著通法是聯(lián)立方程組,求判別式、韋達(dá)定理,根據(jù)題設(shè)關(guān)系進(jìn)行化簡(jiǎn). 2.【2017課標(biāo)3,文20】在直角坐標(biāo)系xOy中,曲線與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為.當(dāng)m
8、變化時(shí),解答下列問(wèn)題: (1)能否出現(xiàn)AC⊥BC的情況?說(shuō)明理由; (2)證明過(guò)A,B,C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值. 【答案】(1)不會(huì);(2)詳見(jiàn)解析 【解析】試題分析:(1)設(shè),由AC⊥BC得;由韋達(dá)定理得,矛盾,所以不存在(2)可設(shè)圓方程為,因?yàn)檫^(guò),所以 ,令 得,即弦長(zhǎng)為3. 試題解析:(1)設(shè),則是方程的根, 所以, 則, 所以不會(huì)能否出現(xiàn)AC⊥BC的情況。 【考點(diǎn)】圓一般方程,圓弦長(zhǎng) 【名師點(diǎn)睛】:直線與圓綜合問(wèn)題的常見(jiàn)類型及解題策略 (1)處理直線與圓的弦長(zhǎng)問(wèn)題時(shí)多用幾何法,即弦長(zhǎng)的一半、弦心距、半徑構(gòu)成直角三角形.代數(shù)方法:運(yùn)用根與系數(shù)的關(guān)系及弦長(zhǎng)
9、公式: (2)圓的切線問(wèn)題的處理要抓住圓心到直線的距離等于半徑,從而建立關(guān)系解決問(wèn)題. 3.【2017北京,文19】已知橢圓C的兩個(gè)頂點(diǎn)分別為A(?2,0),B(2,0),焦點(diǎn)在x軸上,離心率為. (Ⅰ)求橢圓C的方程; (Ⅱ)點(diǎn)D為x軸上一點(diǎn),過(guò)D作x軸的垂線交橢圓C于不同的兩點(diǎn)M,N,過(guò)D作AM的垂線交BN于點(diǎn)E.求證:△BDE與△BDN的面積之比為4:5. 【答案】(Ⅰ) ;(Ⅱ)詳見(jiàn)解析. (Ⅱ)設(shè),則. 由題設(shè)知,且. 直線的斜率,故直線的斜率. 所以直線的方程為. 直線的方程為. 聯(lián)立解得點(diǎn)的縱坐標(biāo). 由點(diǎn)在橢圓上,得. 所以. 又, , 所以與的面
10、積之比為. 【考點(diǎn)】1.橢圓方程;2.直線與橢圓的位置關(guān)系. 4.【2016高考北京文數(shù)】(本小題14分) 已知橢圓C:過(guò)點(diǎn)A(2,0),B(0,1)兩點(diǎn). (I)求橢圓C的方程及離心率; (Ⅱ)設(shè)P為第三象限內(nèi)一點(diǎn)且在橢圓C上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值. 【答案】(Ⅰ);(Ⅱ)見(jiàn)解析. 【解析】 考點(diǎn):橢圓方程,直線和橢圓的關(guān)系,運(yùn)算求解能力. 【名師點(diǎn)睛】解決定值定點(diǎn)方法一般有兩種:(1)從特殊入手,求出定點(diǎn)、定值、定線,再證明定點(diǎn)、定值、定線與變量無(wú)關(guān);(2)直接計(jì)算、推理,并在計(jì)算、推理的過(guò)程中消去變量
11、,從而得到定點(diǎn)、定值、定線.應(yīng)注意到繁難的代數(shù)運(yùn)算是此類問(wèn)題的特點(diǎn),設(shè)而不求方法、整體思想和消元的思想的運(yùn)用可有效地簡(jiǎn)化運(yùn)算. 5. 【2016高考山東文數(shù)】(本小題滿分14分) 已知橢圓C:(a>b>0)的長(zhǎng)軸長(zhǎng)為4,焦距為2. (I)求橢圓C的方程; (Ⅱ)過(guò)動(dòng)點(diǎn)M(0,m)(m>0)的直線交x軸與點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線段PN的中點(diǎn).過(guò)點(diǎn)P作x軸的垂線交C于另一點(diǎn)Q,延長(zhǎng)線QM交C于點(diǎn)B. (i)設(shè)直線PM、QM的斜率分別為k、k',證明為定值. (ii)求直線AB的斜率的最小值. 【答案】(Ⅰ) .(Ⅱ)(i)見(jiàn)解析;(ii)直線AB 的斜率
12、的最小值為 . 【解析】 此時(shí),所以為定值. 所以直線AB 的斜率的最小值為 . 考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì);2.直線與橢圓的位置關(guān)系;3.基本不等式. 【名師點(diǎn)睛】本題對(duì)考生計(jì)算能力要求較高,是一道難題.解答此類題目,利用的關(guān)系,確定橢圓(圓錐曲線)方程是基礎(chǔ),通過(guò)聯(lián)立直線方程與橢圓(圓錐曲線)方程的方程組,應(yīng)用一元二次方程根與系數(shù)的關(guān)系,得到參數(shù)的解析式或方程是關(guān)鍵,易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)漏百出..本題能較好的考查考生的邏輯思維能力、基本計(jì)算能力、分析問(wèn)題解決問(wèn)題的能力等. 6. 【2016高考四川文科】(本小題滿分13分) 已知橢圓E:的
13、一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓E上. (Ⅰ)求橢圓E的方程; (Ⅱ)設(shè)不過(guò)原點(diǎn)O且斜率為2(1)的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于C,D,證明:. 【答案】(1);(2)證明詳見(jiàn)解析. 【解析】 所以. 又 . 所以. 考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì). 【名師點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力和數(shù)形結(jié)合的思想.在涉及到直線與橢圓(圓錐曲線)的交點(diǎn)問(wèn)題時(shí),一般都設(shè)交點(diǎn)坐標(biāo)為,同時(shí)把直線方程與橢圓方程聯(lián)立,消元后,可得,再把用表示出來(lái),并代入剛才的,這種方法是解析幾何
14、中的“設(shè)而不求”法.可減少計(jì)算量,簡(jiǎn)化解題過(guò)程. 7. 【2016年高考北京理數(shù)】(本小題14分) 已知橢圓C: ()的離心率為 ,,,,的面積為1. (1)求橢圓C的方程; (2)設(shè)的橢圓上一點(diǎn),直線與軸交于點(diǎn)M,直線PB與軸交于點(diǎn)N. 求證:為定值. 【答案】(1);(2)詳見(jiàn)解析. 考點(diǎn):1.橢圓方程及其性質(zhì);2.直線與橢圓的位置關(guān)系. 【名師點(diǎn)睛】解決定值定點(diǎn)方法一般有兩種:(1)從特殊入手,求出定點(diǎn)、定值、定線,再證明定點(diǎn)、定值、定線與變量無(wú)關(guān);(2)直接計(jì)算、推理,并在計(jì)算、推理的過(guò)程中消去變量,從而得到定點(diǎn)、定值、定線.應(yīng)注意到繁難的代數(shù)運(yùn)算是此類問(wèn)題的特點(diǎn)
15、,設(shè)而不求方法、整體思想和消元的思想的運(yùn)用可有效地簡(jiǎn)化運(yùn)算. 8. 【2016年高考四川理數(shù)】(本小題滿分13分) 已知橢圓E:的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線與橢圓E有且只有一個(gè)公共點(diǎn)T. (Ⅰ)求橢圓E的方程及點(diǎn)T的坐標(biāo); (Ⅱ)設(shè)O是坐標(biāo)原點(diǎn),直線l’平行于OT,與橢圓E交于不同的兩點(diǎn)A、B,且與直線l交于點(diǎn)P.證明:存在常數(shù),使得,并求的值. 【答案】(Ⅰ),點(diǎn)T坐標(biāo)為(2,1);(Ⅱ). (II)由已知可設(shè)直線 的方程為, 有方程組 可得 所以P點(diǎn)坐標(biāo)為( ),. 考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì). 【名師點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程
16、及其幾何性質(zhì),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力和數(shù)形結(jié)合的思想.在涉及到直線與橢圓(圓錐曲線)的交點(diǎn)問(wèn)題時(shí),一般都設(shè)交點(diǎn)坐標(biāo)為,同時(shí)把直線方程與橢圓方程聯(lián)立,消元后,可得,再把用表示出來(lái),并代入剛才的,這種方法是解析幾何中的“設(shè)而不求”法.可減少計(jì)算量,簡(jiǎn)化解題過(guò)程. 9.【2017北京,文19】已知橢圓C的兩個(gè)頂點(diǎn)分別為A(?2,0),B(2,0),焦點(diǎn)在x軸上,離心率為. (Ⅰ)求橢圓C的方程; (Ⅱ)點(diǎn)D為x軸上一點(diǎn),過(guò)D作x軸的垂線交橢圓C于不同的兩點(diǎn)M,N,過(guò)D作AM的垂線交BN于點(diǎn)E.求證:△BDE與△BDN的面積之比為4:5. 【答案】(Ⅰ) ;(Ⅱ)詳見(jiàn)解析. (Ⅱ)
17、設(shè),則. 由題設(shè)知,且. 直線的斜率,故直線的斜率. 所以直線的方程為. 直線的方程為. 聯(lián)立解得點(diǎn)的縱坐標(biāo). 【反饋練習(xí)】 1. 【2018黑龍江齊齊哈爾八中三?!恳阎獧E圓: ()的離心率為,過(guò)右焦點(diǎn)且垂直于軸的直線與橢圓交于, 兩點(diǎn),且,直線: 與橢圓交于, 兩點(diǎn). (1)求橢圓的標(biāo)準(zhǔn)方程; (2)已知點(diǎn),若是一個(gè)與無(wú)關(guān)的常數(shù),求實(shí)數(shù)的值. 【答案】(1);(2)1 【解析】試題分析:(1)由題意, ,又,求得橢圓方程;(2)聯(lián)立方程組,得到韋達(dá)定理, ,所以所以,解得. (2)設(shè), ,聯(lián)立方程消元得, , ∴, , 又是一個(gè)與無(wú)關(guān)的常數(shù),∴,
18、即, ∴, .∵,∴. 當(dāng)時(shí), ,直線與橢圓交于兩點(diǎn),滿足題意. 2. 【2018北京大興聯(lián)考】已知橢圓的短軸端點(diǎn)到右焦點(diǎn)的距離為2. (Ⅰ)求橢圓的方程; (Ⅱ)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),交直線于點(diǎn),若, ,求證: 為定值. 【答案】(1) ;(2)詳見(jiàn)解析. 方法一:因?yàn)?,所? 同理,且與異號(hào), 所以 .
19、 所以, 為定值. 方法三:由題意直線過(guò)點(diǎn),設(shè)方程為 , 將代人得點(diǎn)坐標(biāo)為, 由 消元得, 設(shè), ,則且, 因?yàn)椋? 同理,且與異號(hào), 所以 . 又當(dāng)直線與軸重合時(shí), , 所以, 為定值. 【點(diǎn)睛】本題考查直線和橢圓的位置關(guān)系,其主要思路是聯(lián)立直線和橢圓的方程,整理成關(guān)于或的一元二次方程,利用根與系數(shù)的
20、關(guān)系進(jìn)行求解,因?yàn)橹本€過(guò)點(diǎn),在設(shè)方程時(shí),往往設(shè)為 ,可減少討論該直線是否存在斜率. 3. 【2018云南昆明一中一?!恳阎?jiǎng)狱c(diǎn)滿足: . (1)求動(dòng)點(diǎn)的軌跡的方程; (2)設(shè)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),證明:直線恒過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo). 【答案】(1);(2)直線過(guò)定點(diǎn) ,證明見(jiàn)解析. 4. 【2018廣西柳州摸底聯(lián)考】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且. (1)求該拋物線的方程; (2)已知拋物線上一點(diǎn),過(guò)點(diǎn)作拋物線的兩條弦和,且,判斷直線是否過(guò)定點(diǎn)?并說(shuō)明理由. 【答案】(1);(2)定點(diǎn) 【解析】試題分析:(1)利
21、用點(diǎn)斜式設(shè)直線直線的方程,與拋物線聯(lián)立方程組,結(jié)合韋達(dá)定理與弦長(zhǎng)公式求,再根據(jù)解得.(2)先設(shè)直線方程, 與拋物線聯(lián)立方程組,結(jié)合韋達(dá)定理化簡(jiǎn),得或,代入方程可得直線過(guò)定點(diǎn) (2)由(1)可得點(diǎn),可得直線的斜率不為0, 設(shè)直線的方程為: , 聯(lián)立,得, 則①. 設(shè),則. ∵ 即,得: , ∴,即或, 代人①式檢驗(yàn)均滿足, ∴直線的方程為: 或. ∴直線過(guò)定點(diǎn)(定點(diǎn)不滿足題意,故舍去). 點(diǎn)睛:定點(diǎn)、定值問(wèn)題通常是通過(guò)設(shè)參數(shù)或取特殊值來(lái)確定“定點(diǎn)”是什么、“定值”是多少,或者將該問(wèn)題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問(wèn)題,證明該式是恒定的. 定點(diǎn)、
22、定值問(wèn)題同證明問(wèn)題類似,在求定點(diǎn)、定值之前已知該值的結(jié)果,因此求解時(shí)應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點(diǎn)、定值顯現(xiàn). 5. 【2018河南洛陽(yáng)聯(lián)考】如圖,點(diǎn)是拋物線: ()的焦點(diǎn),點(diǎn)是拋物線上的定點(diǎn),且,點(diǎn), 是拋物線上的動(dòng)點(diǎn),直線, 斜率分別為, . (1)求拋物線的方程; (2)若,點(diǎn)是拋物線在點(diǎn), 處切線的交點(diǎn),記的面積為,證明為定值. 【答案】(1)(2) 試題解析: (1)設(shè),由題知,所以 , 所以代入()中得,即, 所以拋物線的方程是. 點(diǎn)睛:定點(diǎn)、定值問(wèn)題通常是通過(guò)設(shè)參數(shù)或取特殊值來(lái)確定“定點(diǎn)”是什么、“定值”是多少,或者將該問(wèn)題涉及的幾何式
23、轉(zhuǎn)化為代數(shù)式或三角問(wèn)題,證明該式是恒定的. 定點(diǎn)、定值問(wèn)題同證明問(wèn)題類似,在求定點(diǎn)、定值之前已知該值的結(jié)果,因此求解時(shí)應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點(diǎn)、定值顯現(xiàn). 6. 【2018湖北八校聯(lián)考】已知拋物線在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為. (1)若,過(guò)點(diǎn), 的直線與拋物線相交于另一點(diǎn),求的值; (2)若直線與拋物線相交于兩點(diǎn),與圓相交于兩點(diǎn), 為坐標(biāo)原點(diǎn), ,試問(wèn):是否存在實(shí)數(shù),使得的長(zhǎng)為定值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由. 【答案】(1);(2)時(shí), , 的長(zhǎng)為定值. (2)設(shè)直線的方程為,代入拋物線方程可得, 設(shè) ,則, ,① 由得: , 整理得,②
24、 將①代入②解得,∴直線, ∵圓心到直線l的距離,∴, 顯然當(dāng)時(shí), , 的長(zhǎng)為定值. 點(diǎn)睛:本題主要考查了拋物線的性質(zhì),直線與拋物線的位置關(guān)系,直線與圓的位置關(guān)系,難度中檔;拋物線上點(diǎn)的特征,拋物線上任意一點(diǎn)到焦點(diǎn)的距離和到準(zhǔn)線的距離相等,即為,兩直線垂直即可轉(zhuǎn)化為斜率也可轉(zhuǎn)化為數(shù)量積為0,直線與圓相交截得的弦長(zhǎng)的一半,圓的半徑以及圓心到直線的距離可構(gòu)成直角三角形. 7. 【2018黑龍江齊齊哈爾八中二模】以邊長(zhǎng)為的正三角形的頂點(diǎn)為坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線上,過(guò)拋物線的焦點(diǎn)的直線過(guò)交拋物線于兩點(diǎn). (1)求拋物線的方程; (2)求證: 為定值; (3)求線段的中點(diǎn)的軌跡方程
25、. 【答案】(1);(2)證明見(jiàn)解析;(3) 試題解析: (1)因?yàn)檎切魏蛼佄锞€都是軸對(duì)稱圖形,且三角形的一個(gè)頂點(diǎn)扣拋物線的頂點(diǎn)重合,所以,三角形的頂點(diǎn)關(guān)于軸對(duì)稱,如圖所示. 由可得, ∵,∴. ∴拋物線的方程為. 8. 【2018湖南株洲兩校聯(lián)考】已知橢圓E: 經(jīng)過(guò)點(diǎn)P(2,1),且離心率為. (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程; (Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過(guò)定點(diǎn),如果經(jīng)過(guò)定點(diǎn)請(qǐng)求出定點(diǎn)的坐標(biāo),如果不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由. 【答案】(1);(2)直線AB過(guò)定點(diǎn)Q(0,﹣2). 【解析】試題分
26、析:(1)根據(jù)橢圓的幾何性質(zhì)得到橢圓方程;(2)先由特殊情況得到結(jié)果,再考慮一般情況,聯(lián)立直線和橢圓得到二次函數(shù),根據(jù)韋達(dá)定理,和向量坐標(biāo)化的方法,得到結(jié)果。 (Ⅱ)當(dāng)M,N分別是短軸的端點(diǎn)時(shí),顯然直線AB為y軸,所以若直線過(guò)定點(diǎn),這個(gè)定點(diǎn)一點(diǎn)在y軸上, 當(dāng)M,N不是短軸的端點(diǎn)時(shí),設(shè)直線AB的方程為y=kx+t,設(shè)A(x1,y1)、B(x2,y2), 由消去y得(1+4k2)x2+8ktx+4t2﹣8=0,·則△=16(8k2﹣t2+2)>0, x1+x2=,x1x2=, 又直線PA的方程為y﹣1=(x﹣2),即y﹣1=(x﹣2), 因此M點(diǎn)坐標(biāo)為(0
27、, ),同理可知:N(0, ), 由,則+=0, 化簡(jiǎn)整理得:(2﹣4k)x1x2﹣(2﹣4k+2t)(x1+x2)+8t=0, 則(2﹣4k)×﹣(2﹣4k+2t)()+8t=0, 當(dāng)且僅當(dāng)t=﹣2時(shí),對(duì)任意的k都成立,直線AB過(guò)定點(diǎn)Q(0,﹣2). 9. 【2018廣西南寧聯(lián)考】已知拋物線上一點(diǎn)到焦點(diǎn)的距離為. (l)求拋物線的方程; (2)拋物線上一點(diǎn)的縱坐標(biāo)為1,過(guò)點(diǎn)的直線與拋物線交于兩個(gè)不同的點(diǎn)(均與點(diǎn)不重合),設(shè)直線的斜率分別為,求證:為定值. 【答案】(1);(2)證明見(jiàn)解析. 【解析】試題分析:(1)由焦半徑定義和點(diǎn)在拋物線上建立兩個(gè)方程,兩個(gè)未知數(shù),可求得
28、拋物線方程。(2)由(1)知拋物線的方程,及,,設(shè)過(guò)點(diǎn)的直線的方程為, 10. 【2018重慶市第一中學(xué)模擬】已知橢圓的短軸端點(diǎn)和焦點(diǎn)組成的四邊形為正方形,且橢圓過(guò)點(diǎn). (1)求橢圓的標(biāo)準(zhǔn)方程; (2)四邊形的頂點(diǎn)都在橢圓上,且對(duì)角線、過(guò)原點(diǎn),若,求證:四邊形的面積為定值. 【解析】(1)由題意, ,又,解得, , 所以橢圓的標(biāo)準(zhǔn)方程為. (2)設(shè)直線的方程為,設(shè), , 聯(lián)立得, , , , ∵,∴,∴ , , ∴,∴,∴, 設(shè)原點(diǎn)到直線的距離為,則 , ∴,即四邊形的面積為定值. 11. 【2018黑龍江齊齊哈爾市第八中學(xué)模擬】已
29、知拋物線的焦點(diǎn)為,傾斜角為的直線過(guò)點(diǎn)與拋物線交于兩點(diǎn), 為坐標(biāo)原點(diǎn), 的面積為. (1)求; (2)設(shè)點(diǎn)為直線與拋物線在第一象限的交點(diǎn),過(guò)點(diǎn)作的斜率分別為的兩條弦,如果,證明直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo). 而直線的方程為,因?yàn)橐矑佄锞€上,所以代入上述方程并整理得, , . 令,則,代入的方程得, 整理得, 若上式對(duì)任意變化的恒成立,則,解得 故直線經(jīng)過(guò)定點(diǎn). 12. 在平面直角坐標(biāo)系中,已知圓,橢圓, 為橢圓的右頂點(diǎn),過(guò)原點(diǎn)且異于軸的直線與橢圓交于兩點(diǎn), 在軸的上方,直線與圓的另一交點(diǎn)為,直線與圓的另一交點(diǎn)為, (1)若,求直線的斜率; (2)設(shè)與的面積分別為,求的最大值. 44
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會(huì)全文PPT
- 2025年寒假安全教育班會(huì)全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報(bào)
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會(huì)理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個(gè)人述職述廉報(bào)告
- 一文解讀2025中央經(jīng)濟(jì)工作會(huì)議精神(使社會(huì)信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報(bào)告自我評(píng)估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個(gè)人述職報(bào)告及2025年工作計(jì)劃
- 寒假計(jì)劃中學(xué)生寒假計(jì)劃安排表(規(guī)劃好寒假的每個(gè)階段)
- 中央經(jīng)濟(jì)工作會(huì)議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實(shí)踐建新功