1對1數(shù)學(xué)講義25

上傳人:fgh****35 文檔編號:70908473 上傳時間:2022-04-06 格式:DOC 頁數(shù):5 大?。?18.43KB
收藏 版權(quán)申訴 舉報 下載
1對1數(shù)學(xué)講義25_第1頁
第1頁 / 共5頁
1對1數(shù)學(xué)講義25_第2頁
第2頁 / 共5頁
1對1數(shù)學(xué)講義25_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《1對1數(shù)學(xué)講義25》由會員分享,可在線閱讀,更多相關(guān)《1對1數(shù)學(xué)講義25(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、年級: 高二 教室: 科目:數(shù)學(xué) 日期: 2013 年7 月 26日 課次:1 數(shù)列的概念及通項公式 一 課題名稱:數(shù)列的概念及通項公式 二 學(xué)習(xí)目標(biāo):(1)理解數(shù)列及其有關(guān)概念,了解數(shù)列和函數(shù)之間的關(guān)系; (2)了解數(shù)列的通項公式,并會用通項公式寫出數(shù)列的任意一項; (3) 對于比較簡單的數(shù)列,會根據(jù)其前幾項寫出它的通項公式. 三 教學(xué)過程 (一)創(chuàng)設(shè)情景,導(dǎo)入課題 教師先舉一些例子引入數(shù)列的概念.

2、 1). 由小到大的正偶數(shù)排成一列 2,4,6,8,? 2). 正整數(shù)的倒數(shù)排成一列 3). -1的正整數(shù)次冪排成一列:-1, 1, -1, 1, … (二)師生互動,探究新知 1. 數(shù)列的定義 按一定次序排列的一列數(shù)叫做數(shù)列. 數(shù)列中的每一個數(shù)叫做這個數(shù)列的項,各項依次叫做這個數(shù)列的第一項(或首項), 第二項, … ,第n項, ….., 數(shù)列的第n項an叫做數(shù)列的通項(或一般項) 數(shù)列的一般形式:,或簡記為,其中是數(shù)列的第n項 師生用上述例子討論或表達(dá)數(shù)列相關(guān)概念的表述. 2. 數(shù)列的分類 1)根據(jù)數(shù)列項數(shù)的多少分: 有窮數(shù)

3、列:項數(shù)有限的數(shù)列.例如數(shù)列1,2,3,4,5,6. 是有窮數(shù)列 無窮數(shù)列:項數(shù)無限的數(shù)列.例如數(shù)列1,2,3,4,5,6…是無窮數(shù)列 2)根據(jù)數(shù)列項的大小分: 遞增數(shù)列:從第2項起,每一項都大于它的前一項的數(shù)列. 遞減數(shù)列:從第2項起,每一項都小于它的前一項的數(shù)列. 常數(shù)數(shù)列:各項相等的數(shù)列. 擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列. 觀察:課本P28-29的六組數(shù)列,哪些是遞增數(shù)列,遞減數(shù)列,常數(shù)數(shù)列,擺動數(shù)列 3. 數(shù)列的通項公式 下面我們再來看這些數(shù)列的每一項與這一項的序號是否有一定的對應(yīng)關(guān)系?這一關(guān)系可否用一個公式表示?(引導(dǎo)學(xué)生進(jìn)一

4、步理解數(shù)列與項的定義,從而發(fā)現(xiàn)數(shù)列的通項公式)對于上面的數(shù)列②,第一項與這一項的序號有這樣的對應(yīng)關(guān)系: 項 ↓ ↓ ↓ ↓ ↓ 序號 1 2 3 4 5[來源:][來源: ] 這個數(shù)的第一項與這一項的序號可用一個公式:來表示其對應(yīng)關(guān)系, 即:只要依次用1,2,3…代替公式中的n,就可以求出該數(shù)列相應(yīng)的各項. 結(jié)合上述其它例子,練習(xí)找其對應(yīng)關(guān)系. 數(shù)列可以看成以正整數(shù)集N*(或它的有限子集{1,2,3,…,n})為定義域的函數(shù),當(dāng)自變量從小到大依次取值時對應(yīng)的一列函數(shù)值. 反過來,對于函數(shù)y=f(x),如果f

5、(i)(i=1、2、3、4…)有意義,那么我們可以得到一個數(shù)列f(1)、 f(2)、 f (3)、 f(4)…,f(n),… 如果數(shù)列的第n項與n之間的關(guān)系可以用一個公式來表示,那么這個公式就叫做這個數(shù)列的通項公式. 注意:⑴并不是所有數(shù)列都能寫出其通項公式,如上述數(shù)列④; ⑵一個數(shù)列的通項公式有時是不唯一的,如數(shù)列:1,0,1,0,1,0,…它的通項公式可以是,也可以是. ⑶數(shù)列通項公式的作用:①求數(shù)列中任意一項;②檢驗?zāi)硵?shù)是否是該數(shù)列中的一項. 數(shù)列的通項公式具有雙重身份,它表示了數(shù)列的第 項,又是這個數(shù)列中所有各項的一般表示.通項公式反映了一個數(shù)列項與項數(shù)的函數(shù)關(guān)系,給了數(shù)列的

6、通項公式,這個數(shù)列便確定了,代入項數(shù)就可求出數(shù)列的每一項. 4. 數(shù)列的表示 1) 解析法表示: 數(shù)列的通項公式 an=f(n)抽象簡介. 2) 列表法 不需要計算就可以直接看出項數(shù)與項相對應(yīng)的關(guān)系 n[來源:] 1 2 3 ? an a1 a2 a3 ? 3) 函數(shù)圖像法 數(shù)列的圖像是一系列孤立的點(diǎn). 點(diǎn)的坐標(biāo)為(n,an) 圖像能直接形象地表示出隨著項數(shù)的變化,相應(yīng)項變化的趨勢,直觀明了. 5. 數(shù)列的遞推公式 引導(dǎo)學(xué)生用具體實例思考數(shù)列相鄰兩項的關(guān)系,從而得到數(shù)列的遞推概念及遞推公式. 如果一個數(shù)列{}的首項=1,從第2項起每一

7、項等于它的前一項的2倍再加1,即 那么 像這樣給出數(shù)列的方法叫做遞推法. 如果已知數(shù)列的第1項(或前幾項),且任一項與它的前一項(或前n項)間的關(guān)系可以用一個公式來表示,那么這個公式就叫做這個數(shù)列的遞推公式. 遞推公式也是給出數(shù)列的一種方法. 如下數(shù)字排列的一個數(shù)列:3,5,8,13,21,34,55,89 遞推公式為: 例1..寫出數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù) (1)1, ,,; (2) 2,0,2,0. 例2設(shè)數(shù)列滿足寫出這個數(shù)列的前五項。 3、歸納總結(jié)。 1.數(shù)列的定義

8、; 2.數(shù)列的通項公式; 3.數(shù)列和函數(shù)的關(guān)系; 4.數(shù)列的表示   5.數(shù)列的遞推公式 4、拓展延伸。 四、 課后作業(yè) 1下列四個數(shù)中,哪一個是數(shù)列{}中的一項( ) A.380 B. 39 C. 35 D. 23 2設(shè)數(shù)列,,,,…,則是這個數(shù)列的( ) 3已知數(shù)列的通項公式為,則下面哪一個數(shù)是這個數(shù)列的一項( ) A. B. C. D. 4觀察數(shù)列:( ), 括號中的數(shù)字應(yīng)為( ) A.33 B.15 C.-21 D.-37 5設(shè),則數(shù)列從首項到第

9、幾項的和最大( ) A.第10項 B.第11項 C.第10項或11項 D.第12項 6數(shù)列滿足:,則等于( ) A. B. B. D. 6 5 任課教師: 黃 老師 電話 18974720309 教學(xué)質(zhì)量監(jiān)督電話:8881049 教務(wù)電話: 石鼓校區(qū):0734-3380111 華新校區(qū):0734- 3163111 珠暉校區(qū):0734-8800896 郵 箱: bwjyvip@ bwjyhx@ bowenzhuhui@

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔

相關(guān)搜索

關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!