2018版高考數(shù)學(xué) 考點(diǎn)50 與離散型隨機(jī)變量的分布列、均值相結(jié)合的綜合問(wèn)題試題解讀與變式
《2018版高考數(shù)學(xué) 考點(diǎn)50 與離散型隨機(jī)變量的分布列、均值相結(jié)合的綜合問(wèn)題試題解讀與變式》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018版高考數(shù)學(xué) 考點(diǎn)50 與離散型隨機(jī)變量的分布列、均值相結(jié)合的綜合問(wèn)題試題解讀與變式(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 考點(diǎn)50 與離散型隨機(jī)變量的分布列、均值相結(jié)合的綜合問(wèn)題 【考綱要求】 理解取有限個(gè)值的離散型隨機(jī)變量的均值、方差的概念,會(huì)求簡(jiǎn)單離散型隨機(jī)變量的均值、方差,并能利用離散型隨機(jī)變量的均值、方差概念解決一些簡(jiǎn)單問(wèn)題. 【命題規(guī)律】 離散型隨機(jī)變量的期望與方差的應(yīng)用,是高考的重要考點(diǎn),不僅考查學(xué)生的理解能力與數(shù)學(xué)計(jì)算能力,而且不斷創(chuàng)新問(wèn)題情境,突出學(xué)生運(yùn)用概率、期望與方差解決實(shí)際問(wèn)題的能力,以解答題為主,中等難度. 【典型高考試題變式】 與離散型隨機(jī)變量的分布列、均值相結(jié)合的綜合問(wèn)題 例1.【2017課標(biāo)3】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每
2、瓶 6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表: 最高氣溫 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天數(shù) 2 16 36 25 7 4 以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率. (1)求六月份這種酸
3、奶一天的需求量X(單位:瓶)的分布列; (2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量n(單位: 瓶)為多少時(shí),Y的數(shù)學(xué)期望達(dá)到最大值? 【分析】(1)所有的可能取值為200,300,500,利用題意求得概率即可得到隨機(jī)變量的分布列; (2)由題中所給條件分類討論可得n=300時(shí),Y的數(shù)學(xué)期望達(dá)到最大值,為520元. 【解析】(1)由題意知,所有可能取值為200,300,500,由表格數(shù)據(jù)知 ,,. 因此的分布列為 0.2 0.4 0.4 所以n=300時(shí),Y的數(shù)學(xué)期望達(dá)到最大值,最大值為520元. 【名師點(diǎn)睛
4、】離散型隨機(jī)變量的分布列指出了隨機(jī)變量X的取值以及取各值的概率;要理解兩種特殊的 概率分布——兩點(diǎn)分布與超幾何分布,并善于靈活運(yùn)用兩性質(zhì):一是pi≥0(i=1,2,…);二是p1+p2+…+pn=1檢驗(yàn)分布列的正誤. 【變式1】【2018河南省漯河市模擬】汽車店是一種以“四位一體”為核心的特許經(jīng)營(yíng)模式,包括整車銷售、零配件銷售、售后服務(wù)、信息反饋等。某品牌汽車店為了了解, , 三種類型汽車質(zhì)量問(wèn)題,對(duì)售出的三種類型汽車各取100輛進(jìn)行跟蹤服務(wù),發(fā)現(xiàn)各車型一年內(nèi)需要維修的車輛如下表所示1.表1 (1)某公司一次性從店購(gòu)買該品牌, , 型汽車各一輛,記表示這三輛車的一年內(nèi)需要維修的車輛數(shù),求
5、的分布列及數(shù)學(xué)期望.(各型汽車維修的頻率視為其需要維修的概率). (2)該品牌汽車店為了對(duì)廠家新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按使事先擬定的各種價(jià)格進(jìn)行試銷相等時(shí)間,得到數(shù)據(jù)如表2. 預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從的關(guān)系,且該產(chǎn)品的成本是500元/件,為使4S店獲得最大利潤(rùn)(利潤(rùn)=銷售收入-成本),該產(chǎn)品的單價(jià)應(yīng)定位多少元? 表1 車型 頻數(shù) 20 20 40 表2 單價(jià) (元) 800 820 840 850 880 900 銷量 (件) 90 84 83 80 75 68 【解析】(1)根據(jù)表格, 型車
6、維修的概率為, 型車維修的概率為, 型車維修的概率為. 由題意, 的可能值為0,1,2,3, 所以 ; ; 所以的分布列為 0 1 2 3 所以 . 【變式2】【2018四川省德陽(yáng)市三校聯(lián)合測(cè)試】為了引導(dǎo)居民合理用電,國(guó)家決定實(shí)行合理的階梯電價(jià),居民用電原則上以住宅為單位(一套住宅為一戶). 階梯級(jí)別 第一階梯 第二階梯 第三階梯 月用電范圍(度) (0,210] (210,400] 某市隨機(jī)抽取10戶同一個(gè)月的用電情況,得到統(tǒng)計(jì)表如下: 居民用電戶編號(hào) 1 2 3 4 5 6 7 8 9
7、10 用電量(度) 53 86 90 124 132 200 215 225 300 410 若規(guī)定第一階梯電價(jià)每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計(jì)算A居民用電戶用電410度時(shí)應(yīng)交電費(fèi)多少元? 現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望; 以表中抽到的10戶作為樣本估計(jì)全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值. 【解析】(1)元, 設(shè)取到第二階梯電量的用戶數(shù)為,可知第二階梯電量的用戶有3戶,則可取0,1,2,3, ,
8、 , 故的分布列是 0 1 2 3 所以 , 可知從全市中抽取10戶的用電量為第一階梯,滿足,可知 , ,解得, , 所以當(dāng)時(shí),概率最大,所以. 【數(shù)學(xué)思想】 ① 數(shù)形結(jié)合思想. ② 函數(shù)方程思想. ③ 轉(zhuǎn)化與化歸思想. 【溫馨提示】 均值能夠反映隨機(jī)變量取值的“平均水平”,因此,當(dāng)均值不同時(shí),兩個(gè)隨機(jī)變量取值的水平可見(jiàn)分曉,由此可對(duì)實(shí)際問(wèn)題作出決策判斷;若兩隨機(jī)變量均值相同或相差不大,則可通過(guò)分析兩變量的方差來(lái)研究隨機(jī)變量的離散程度或者穩(wěn)定程度,進(jìn)而進(jìn)行決策. 【典例試題演練】 1.【2017河南百校聯(lián)考】小李參加一種紅
9、包接龍游戲:他在紅包里塞了12元,然后發(fā)給朋友,如果猜中,將獲得紅包里的所有金額;如果未猜中,將當(dāng)前的紅包轉(zhuǎn)發(fā)給朋友,如果猜中,平分紅包里的金額;如果未猜中,將當(dāng)前的紅包轉(zhuǎn)發(fā)給朋友,如果猜中,和平分紅包里的金額;如果未猜中,紅包里的錢將退回小李的賬戶,設(shè)猜中的概率分別為,且是否猜中互不影響. (1)求恰好獲得4元的概率; (2)設(shè)獲得的金額為元,求的分布列; (3)設(shè)獲得的金額為元,獲得的金額為元,判斷所獲得的金額的期望能否超過(guò)的期望與的期望之和. (3)的可能取值為0,4,6;的可能取值為0,4. 因?yàn)椋? , 所以, 所以, 又, 由于,所以所獲得的金額的期望能超過(guò)的
10、期望與的期望之和. 2.【2016洛陽(yáng)市統(tǒng)一考試】今年春節(jié)期間,在為期5天的某民俗廟會(huì)上,某攤點(diǎn)銷售一種兒童玩具的情況如下表: 日期 天氣 2月13日 2月14日 2月15日 2月16日 2月17日 小雨 小雨 陰 陰轉(zhuǎn)多云 多云轉(zhuǎn)陰 銷售量 上午 42 47 58 60 63 下午 55 56 62 65 67 由表可知:兩個(gè)雨天的平均銷售量為100件/天,三個(gè)非雨天的平均銷售量為125件/天. (1)以十位數(shù)字為莖,個(gè)位數(shù)字為葉,畫出表中10個(gè)銷售數(shù)據(jù)的莖葉圖,并求出這組數(shù)據(jù)的中位數(shù); (2)假如明天廟會(huì)5天中每天下雨的概率為,且每
11、天下雨與否相互獨(dú)立,其他條件不變,試估計(jì)廟會(huì)期間同一類型攤點(diǎn)能夠售出的同種兒童玩具的件數(shù); (3)已知攤位租金為1000元/個(gè),該種玩具進(jìn)貨價(jià)為9元/件,售價(jià)為13元/件,未售出玩具可按進(jìn)貨價(jià)退回廠家,若所獲利潤(rùn)大于1200元的概率超過(guò)0.6,則稱為“值得投資”,那么在(2)的條件下,你認(rèn)為“值得投資”嗎? 【解析】(1)由已知得如下莖葉圖,中位數(shù)為. (2)設(shè)明年廟會(huì)期間下雨天數(shù)為,則的所有可能取值為0,1,2,3,4,5,且~, 所以, 所以估計(jì)明年廟會(huì)期間,可能有2天下雨,3天不下雨, 據(jù)此推測(cè)廟會(huì)期間該攤點(diǎn)能售出的玩具件數(shù)為. 3.一個(gè)口袋中有2個(gè)白球和n個(gè)紅球(
12、n≥2,且n∈N*),每次從袋中摸出兩個(gè)球(每次摸球后把這兩個(gè)球放回袋中),若摸出的兩個(gè)球顏色相同為中獎(jiǎng),否則為不中獎(jiǎng). (1)試用含n的代數(shù)式表示一次摸球中獎(jiǎng)的概率; (2)若n=3,求三次摸球恰有一次中獎(jiǎng)的概率; (3)記三次摸球恰有一次中獎(jiǎng)的概率為f(p),當(dāng)n為何值時(shí),f(p)取最大值? 【解析】(1)一次摸球從n+2個(gè)球中任選兩個(gè),有C種選法,其中兩球顏色相同有C+C種選法,因此一次摸球中獎(jiǎng)的概率為=. (2)若n=3,則一次摸球中獎(jiǎng)的概率為,三次摸球是獨(dú)立重復(fù)試驗(yàn),三次摸球中恰有一次中獎(jiǎng)的概率是C··(1-)2=. (3)設(shè)一次摸球中獎(jiǎng)的概率是p,則三次摸球恰有一次中獎(jiǎng)
13、的概率是f(p)=C·p·(1-p)2=3p3-6p2+3p,0<p<1. 因?yàn)閒′(p)=9p2-12p+3=3(p-1)(3p-1), 所以f(p)在(0,)上是增函數(shù),在(,1)上是減函數(shù), 所以當(dāng)p=時(shí),f(p)取最大值, 所以p==(n≥2,且n∈N*),所以n=2. 故n=2時(shí),f(p)取最大值. 4.為回饋顧客,某商場(chǎng)擬通過(guò)摸球兌獎(jiǎng)的方式對(duì)1 000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額. (1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求: ①顧客所獲的獎(jiǎng)
14、勵(lì)額為60元的概率; ②顧客所獲的獎(jiǎng)勵(lì)額的分布列及均值; (2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60 000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說(shuō)明理由. (2)根據(jù)商場(chǎng)的預(yù)算,每個(gè)顧客的平均獎(jiǎng)勵(lì)額為60元.所以,先尋找均值為60元的可能方案.對(duì)于面值由10元和50元組成的情況,如果選擇(10,10,10,50)的方案,因?yàn)?0元是面值之和的最大值,所以均值不可能為60元;如果選擇(50,50,50,10)的方
15、案,因?yàn)?0元是面值之和的最小值,所以均值也不可能為60元,因此可能的方案是(10,10,50,50),記為方案1. 對(duì)于面值由20元和40元組成的情況,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),記為方案2. 以下是對(duì)兩個(gè)方案的分析: 對(duì)于方案1,即方案(10,10,50,50),設(shè)顧客所獲的獎(jiǎng)勵(lì)額為X1,則X1的分布列為 X1 20 60 100 P X1的均值E(X1)=20×+60×+100×=60, X1的方差D(X1)=(20-60)2×+(60-60)2×+(100-60)2×
16、=. 對(duì)于方案2,即方案(20,20,40,40),設(shè)顧客所獲的獎(jiǎng)勵(lì)額為X2,則X2的分布列為 X2 40 60 80 P X2的均值E(X2)=40×+60×+80×=60, X2的方差D(X2)=(40-60)2×+(60-60)2×+(80-60)2×=. 由于兩種方案的獎(jiǎng)勵(lì)額的均值都符合要求,但方案2獎(jiǎng)勵(lì)額的方差比方案1的小,所以應(yīng)該選擇方案2. 5.(2016·全國(guó)乙卷)某公司計(jì)劃購(gòu)買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200 元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500 元.
17、現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100 臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:以這100 臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1 臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記X表示2 臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購(gòu)買2 臺(tái)機(jī)器的同時(shí)購(gòu)買的易損零件數(shù). (1)求X的分布列; (2)若要求P(X≤n)≥0.5,確定n的最小值; (3)以購(gòu)買易損零件所需費(fèi)用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個(gè)? 【解析】(1)由柱狀圖及以頻率代替概率可得,一臺(tái)機(jī)器在三年內(nèi)需更換的易損零件數(shù)為8,9,10,11的概率分別為0.2,0.
18、4,0.2,0.2. 從而P(X=16)=0.2×0.2=0.04; P(X=17)=2×0.2×0.4=0.16; P(X=18)=2×0.2×0.2+0.4×0.4=0.24; P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24; P(X=20)=2×0.2×0.4+0.2×0.2=0.2; P(X=21)=2×0.2×0.2=0.08; P(X=22)=0.2×0.2=0.04. 所以X的分布列為 X 16 17 18 19 20 21 22 P 0.04 0.16 0.24 0.24 0.2 0.08 0.04 6
19、.【2018四川省樂(lè)山外國(guó)語(yǔ)學(xué)校模擬】某公司每個(gè)工作日由位于市區(qū)的總公司向位于郊區(qū)的分公司開(kāi)一個(gè)來(lái)回的班車(每年按200個(gè)工作日計(jì)算),現(xiàn)有兩種使用班車的方案,方案一是購(gòu)買一輛大巴,需花費(fèi)90萬(wàn)元,報(bào)廢期為10年,車輛平均每年的各種費(fèi)用合計(jì)5萬(wàn)元,司機(jī)年工資6萬(wàn)元,司機(jī)每天請(qǐng)假的概率為0.1(每年請(qǐng)假時(shí)間不超過(guò)15天不扣工資,超過(guò)15天每天100元),若司機(jī)請(qǐng)假則需從公交公司雇傭司機(jī),每天支付300元工資.方案二是租用公交公司的車輛(含司機(jī)),根據(jù)調(diào)研每年12個(gè)月的車輛需求指數(shù)如直方圖所示,其中當(dāng)某月車輛需求指數(shù)在時(shí),月租金為萬(wàn)元. (1)若購(gòu)買大巴,設(shè)司機(jī)每年請(qǐng)假天數(shù)為,求公司因司機(jī)請(qǐng)假而增加的花費(fèi)(元)及使用班車年平均花費(fèi)(萬(wàn)元)的數(shù)學(xué)期望. (2)試用調(diào)研數(shù)據(jù),給出公司使用班車的建議,使得年平均花費(fèi)最少. 【解析】(1)由已知,當(dāng)時(shí), , 當(dāng)時(shí), 所以 由已知,所以 所以(萬(wàn)元) 12
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第7課時(shí)圖形的位置練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第1課時(shí)圖形的認(rèn)識(shí)與測(cè)量1平面圖形的認(rèn)識(shí)練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時(shí)比和比例2作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)4比例1比例的意義和基本性質(zhì)第3課時(shí)解比例練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第7課時(shí)圓柱的體積3作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)1負(fù)數(shù)第1課時(shí)負(fù)數(shù)的初步認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末豐收?qǐng)@作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十二課件新人教版
- 標(biāo)準(zhǔn)工時(shí)講義
- 2021年一年級(jí)語(yǔ)文上冊(cè)第六單元知識(shí)要點(diǎn)習(xí)題課件新人教版
- 2022春一年級(jí)語(yǔ)文下冊(cè)課文5識(shí)字測(cè)評(píng)習(xí)題課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時(shí)數(shù)學(xué)思考1練習(xí)課件新人教版