高二數(shù)學(xué)人教A版選修23 課時作業(yè)25

上傳人:無*** 文檔編號:64258967 上傳時間:2022-03-21 格式:DOC 頁數(shù):10 大?。?21KB
收藏 版權(quán)申訴 舉報 下載
高二數(shù)學(xué)人教A版選修23 課時作業(yè)25_第1頁
第1頁 / 共10頁
高二數(shù)學(xué)人教A版選修23 課時作業(yè)25_第2頁
第2頁 / 共10頁
高二數(shù)學(xué)人教A版選修23 課時作業(yè)25_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高二數(shù)學(xué)人教A版選修23 課時作業(yè)25》由會員分享,可在線閱讀,更多相關(guān)《高二數(shù)學(xué)人教A版選修23 課時作業(yè)25(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 課時作業(yè)(二十五) 1.下列兩個變量之間的關(guān)系是相關(guān)關(guān)系的是(  ) A.正方體的棱長和體積 B.角的弧度數(shù)和它的正弦值 C.速度一定時的路程和時間 D.日照時間與水稻的畝產(chǎn)量 答案 D 解析 因為相關(guān)關(guān)系就是兩個變量之間的一種非確定性關(guān)系,故可由兩個變量之間的關(guān)系確定答案.A,B,C均確定性關(guān)系,即函數(shù)關(guān)系,而D中日照時間與畝產(chǎn)量的關(guān)系是不確定的.故選D. 2.若回歸直線方程中的回歸系數(shù)=0,則相關(guān)系數(shù)(  ) A.r=1        B.r=-1 C.r=0 D.無法確定 答案 C 解析 注意兩個系數(shù)之間的聯(lián)系.=, r=,兩個式

2、子的分子是一致的,當=0時,r一定為0.故選C. 3.在兩個變量y與x的回歸模型中,分別選擇了4個不同的模型,它們的相關(guān)指數(shù)R2如下,其中擬合效果最好的模型是(  ) A.模型1的相關(guān)指數(shù)R2為0.98 B.模型2的相關(guān)指數(shù)R2為0.80 C.模型3的相關(guān)指數(shù)R2為0.50 D.模型4的相關(guān)指數(shù)R2為0.25 答案 A 解析 相關(guān)指數(shù)R2的取值范圍為[0,1],若R2=1,即殘差平方和為0,此時預(yù)測值與觀測值相等.y與x是函數(shù)關(guān)系,也就是說在相關(guān)關(guān)系中R2越接近于1,說明隨機誤差的效應(yīng)越小,y與x相關(guān)程度越大,模型的擬合效果越好.R2=0,說明模型中x與y根本無關(guān).故選A. 4

3、.若變量y與x之間的相關(guān)系數(shù)r=-0.936 2,則變量y與x之間(  ) A.不具有線性相關(guān)關(guān)系 B.具有線性相關(guān)關(guān)系 C.它們的線性關(guān)系還要進一步確定 D.不確定 答案 B 5.某醫(yī)學(xué)科研所對人體脂肪含量與年齡這兩個變量研究得到一組隨機樣本數(shù)據(jù),運用Excel軟件計算得=0.577x-0.448(x為人的年齡,y為人體脂肪含量).對年齡為37歲的人來說,下面說法正確的是(  ) A.年齡為37歲的人體內(nèi)脂肪含量都為20.90% B.年齡為37歲的人體內(nèi)脂肪含量為21.01% C.年齡為37歲的人群中的大部分人的體內(nèi)脂肪含量為20.90% D.年齡為37歲的大部分的人體內(nèi)

4、脂肪含量為31.5% 答案 C 解析 當x=37時,=0.577×37-0.448=20.901≈20.90,由此估計:年齡為37歲的人群中的大部分人的體內(nèi)脂肪含量為20.90%. 6.對變量x,y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖(1);對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖(2).由這兩個散點圖可以判斷(  ) A.變量x與y正相關(guān),u與v正相關(guān) B.變量x與y正相關(guān),u與v負相關(guān) C.變量x與y負相關(guān),u與v正相關(guān) D.變量x與y負相關(guān),u與v負相關(guān) 答案 C 7.已知回歸直線的斜率的估計值是1.23,樣本點的

5、中心為(4,5),則回歸直線方程是________. 答案?。?.23x+0.08 解析 由斜率的估計值為1.23,且回歸直線一定經(jīng)過樣本點的中心(4,5),可得-5=1.23(x-4), 即=1.23x+0.08. 8.若一組觀測值(x1,y1),(x2,y2),…,(xn,yn)之間滿足yi=bxi+a+ei(i=1,2,…,n),且ei恒為0,則R2為________. 答案 1 解析 由ei恒為0知yi=i,即yi-i=0. 故R2=1-=1-0=1. 9.(2010·廣東)某市居民2005~2009年家庭平均收入x(單位:萬元)與年平均支出Y(單位:萬元)的統(tǒng)計資料如

6、下表所示: 年份 2005 2006 2007 2008 2009 收入x 11.5 12.1 13 13.3 15 支出Y 6.8 8.8 9.8 10 12 根據(jù)統(tǒng)計資料,居民家庭年平均收入的中位數(shù)是________,家庭年平均收入與年平均支出有________線性相關(guān)關(guān)系. 答案 13 較強的 解析 由表中所給的數(shù)據(jù)知所求的中位數(shù)為13,畫出x與Y的散點圖知它們有較強的線性相關(guān)關(guān)系. 10.已知兩個變量x與y之間有線性相關(guān)性,5次試驗的觀測數(shù)據(jù)如下: x 100 120 140 160 180 y 45 54 62 75

7、 92 那么變量y關(guān)于x的回歸方程是________. 答案 =0.575x-14.9 解析 由線性回歸的參數(shù)公式可求得=0.575,=-14.9,所以回歸方程為=0.575x-14.9. 11.下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸標準煤)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù). x 3 4 5 6 y 2.5 3 4 4.5 (1)請畫出上表數(shù)據(jù)的散點圖; (2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+; (3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(2)求出的線性回歸方程,預(yù)

8、測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤? (參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5) 解析 (1)散點圖如下圖所示. (2)==4.5, ==3.5, iyi=3×2.5+4×3+5×4+6×4.5=66.5, =32+42+52+62=86. ∴= ==0.7, =-=3.5-0.7×4.5=0.35. ∴=0.7x+0.35. (3)現(xiàn)在生產(chǎn)100噸甲產(chǎn)品用煤 y=0.7×100+0.35=70.35, ∴降低90-70.35=19.65(噸標準煤). ?重點班選做題 12.一臺機器使用時間較長,但還可以使用.它按不同的

9、轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少隨機器運轉(zhuǎn)的速度而變化,下表為抽樣試驗結(jié)果: 轉(zhuǎn)速x(轉(zhuǎn)/秒) 16 14 12 8 每小時生產(chǎn)有缺點的零件數(shù)y(件) 11 9 8 5 (1)對變量y與x進行相關(guān)性檢驗; (2)如果y與x有線性相關(guān)關(guān)系,求線性回歸方程; (3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺點的零件最多為10個,則機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)? 解析 (1)=12.5,=8.25. iyi=438,4 =412.5,=660,=291, 所以r= = =≈≈0.995. 因為r>0.75,所以y與x有線性相關(guān)關(guān)系

10、. (2)=0.728 6x-0.857 1. (3)要使≤10,即0.728 6x-0.857 1≤10, 所以x≤14.901 3. 所以機器的轉(zhuǎn)速應(yīng)控制在14.901 3轉(zhuǎn)/秒以下. 1.甲、乙、丙、丁四位同學(xué)各自對A、B兩變量的線性相關(guān)性作試驗,并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如下表: 甲 乙 丙 丁 r 0.82 0.78 0.69 0.85 m 106 115 124 103 則試驗結(jié)果體現(xiàn)A、B兩變量更強的線性相關(guān)性的是同學(xué)(  ) A.甲 B.乙 C.丙 D.丁 答案 D 解析 由表可知,丁同學(xué)的相

11、關(guān)系數(shù)r最大且殘差平方和m最小,故丁同學(xué)的試驗結(jié)果體現(xiàn)A、B兩變量更強的線性相關(guān)性. 2.若某函數(shù)型相對一組數(shù)據(jù)的殘差平方和為89,其相關(guān)指數(shù)為0.95,則總偏差平方和為________,回歸平方和為________. 答案 1 780 1 691 解析 R2=1-,0.95=1-, ∴總偏差平方和為1 780. 回歸平方和=總偏差平方和-殘差平方和=1 780-89=1 691. 3.對于x與y有如下觀測數(shù)據(jù): x 18 25 30 39 41 42 49 52 y 3 5 6 7 8 8 9 10 (1)作出散點圖; (2)對x與y作回歸

12、分析; (3)求出y與x的回歸直線方程; (4)根據(jù)回歸直線方程,預(yù)測y=20時x的值. 答案 (1)作出散點圖,如圖 (2)作相關(guān)性檢驗. =×(18+25+30+39+41+42+49+52)==37, =×(3+5+6+7+8+8+9+10)=7, =182+252+302+392+412+422+492+522=11 920, =32+52+62+72+82+82+92+102=428, iyi=18×3+25×5+30×6+39×7+41×8+42×8+49×9+52×10=2 257, iyi-8 =2 257-8×37×7=185, -82=11 920

13、-8×372=968, -82=428-8×72=36, ∴r==≈0.991. 由于r=0.991>0.75,因此,認為兩個變量有很強的相關(guān)關(guān)系. (3)回歸系數(shù)==≈0.191, =-=7-0.191×37=-0.067, 所以y對x的回歸直線方程為=0.191x-0.067. (4)當y=20時,有20=0.191x-0.067,得x≈105.因此在y的值為20時,x的值約為105. 4.以下是收集到的房屋的銷售價格y與房屋的大小x的有關(guān)數(shù)據(jù). x(m2) 115 110 80 135 105 y(萬元) 24.8 21.6 18.4 29.2 2

14、2 若y與x呈線性相關(guān)關(guān)系,求回歸直線方程. 解析 作出散點圖. 由圖可知房屋的銷售價格與房屋的大小線性相關(guān). =(24.8+21.6+18.4+29.2+22)=23.2, =(115+110+80+135+105)=109, =1152+1102+802+1352+1052=60 975, iyi=24.8×115+21.6×110+18.4×80+29.2×135+105×22=12 952. ===≈0.196 2. =-=23.2-0.196 2×109=1.814 2, 所以y對x的回歸直線方程為=0.196 2x+1.814 2. 5.一個車間為了規(guī)

15、定工時定額,需要確定加工零件所花費的時間,為此進行了10次試驗,測得數(shù)據(jù)如下: 零件數(shù)x(個) 10 20 30 40 50 60 70 80 90 100 加工時間y(分) 62 68 75 81 89 95 102 108 115 122 (1)計算總偏差平方和,殘差及殘差平方和; (2)求出相關(guān)指數(shù)R2; (3)進行殘差分析. 解析 (1)列出殘差表(=0.668x+54.960,=91.7) i 62 68 75 81 89 95 102 108 115 122 61.6 68.3 75.0 81.7

16、 88.4 95.0 101.7 108.4 115.1 121.8 yi- -29.7 -23.7 -16.7 -10.7 -2.7 3.3 10.3 16.3 23.3 30.3 yi-i 0.4 -0.3 0 -0.7 0.6 0 0.3 -0.4 -0.1 0.2 所以(yi-)2=(-29.7)2+(-23.7)2+…+30.32=3 688.1. (yi-i)2=0.42+(-0.3)2+…+0.22=1.4. 即總偏差平方和為3 688.1,殘差平方和為1.4,殘差值如表中第四行的值. (2)R2=1-≈1-0.00

17、0 38=0.999 62,相關(guān)指數(shù)R2非常接近于1,回歸直線模型擬合效果較好. (3)作出殘差圖甲 圖甲:橫坐標為零件個數(shù),縱坐標為殘差. (4)殘差分析:由散點圖乙和r的值(知識點二的例題,r=0.999 8)可以說明x與y有很強的相關(guān)性,由R2的值可以看出回歸直線模型的擬合效果很好.由殘差圖可以觀察到,第4個樣本點和第5個樣本點的殘差比較大,需要確認在采集這兩個樣本點的過程中是否有人為的失誤,如果有則需要糾正數(shù)據(jù),重新利用線性回歸模型擬合數(shù)據(jù);由殘差圖中的殘差點比較均勻地落在水平的帶狀區(qū)域中(在兩條直線y=-0.65和y=0.67之間),也說明選用的線性回歸模型較為合適,帶狀區(qū)域的寬度僅為1.32,比較狹窄,說明模型擬合精度較高! 最新精品資料

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!