《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第10章 概率 第3節(jié) 幾何概型學(xué)案 文 北師大版》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第10章 概率 第3節(jié) 幾何概型學(xué)案 文 北師大版(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1
2、 1
第三節(jié) 幾何概型
[考綱傳真] 1.了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法估計(jì)概率.2.了解幾何概型的意義.
(對(duì)應(yīng)學(xué)生用書(shū)第153頁(yè))
[基礎(chǔ)知識(shí)填充]
1.幾何概型
向平面上有限區(qū)域(集合)G內(nèi)隨機(jī)地投擲點(diǎn)M,若點(diǎn)M落在子區(qū)域G1G的概率與G1的面積成正比,而與G的形狀、位置無(wú)關(guān),即P(點(diǎn)M落在G1)=,則稱(chēng)這種模型為幾何概型.
2.幾何概型中的G也可以是
3、空間中或直線(xiàn)上的有限區(qū)域,相應(yīng)的概率是體積之比或長(zhǎng)度之比.
3.借助模擬方法可以估計(jì)隨機(jī)事件發(fā)生的概率.
(1)使用計(jì)算機(jī)或者其他方式進(jìn)行的模擬試驗(yàn),以便通過(guò)這個(gè)試驗(yàn)求出隨機(jī)事件的概率的近似值的方法就是模擬方法.
(2)用計(jì)算機(jī)或計(jì)算器模擬試驗(yàn)的方法為隨機(jī)模擬方法.這個(gè)方法的基本步驟是①用計(jì)算器或計(jì)算機(jī)產(chǎn)生某個(gè)范圍內(nèi)的隨機(jī)數(shù),并賦予每個(gè)隨機(jī)數(shù)一定的意義;②統(tǒng)計(jì)代表某意義的隨機(jī)數(shù)的個(gè)數(shù)M和總的隨機(jī)數(shù)的個(gè)數(shù)N;③計(jì)算頻率fn(A)=作為所求概率的近似值.
[基本能力自測(cè)]
1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”)
(1)隨機(jī)模擬方法是以事件發(fā)生的頻率
4、估計(jì)概率.( )
(2)從區(qū)間[1,10]內(nèi)任取一個(gè)數(shù),取到1的概率是.( )
(3)概率為0的事件一定是不可能事件.( )
(4)在幾何概型定義中的區(qū)域可以是線(xiàn)段、平面圖形、立體圖形.( )
[答案] (1)√ (2)× (3)× (4)√
2.(教材改編)有四個(gè)游戲盤(pán),將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎(jiǎng),小明要想增加中獎(jiǎng)機(jī)會(huì),應(yīng)選擇的游戲盤(pán)是
( )
A [P(A)=,P(B)=,P(C)=,P(D)=,
∴P(A)>P(C)=P(D)>P(B).]
3.(20xx·全國(guó)卷Ⅱ)某路口人行橫道的信號(hào)燈為紅燈和綠燈交
5、替出現(xiàn),紅燈持續(xù)時(shí)間為40秒.若一名行人來(lái)到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為( )
A. B.
C. D.
B [如圖,若該行人在時(shí)間段AB的某一時(shí)刻來(lái)到該路口,則該行人至少等待15秒才出現(xiàn)綠燈.AB長(zhǎng)度為40-15=25,由幾何概型的概率公式知,至少需要等待15秒才出現(xiàn)綠燈的概率為=,故選B.]
4.(20xx·石家莊模擬)如圖10-3-1所示,在邊長(zhǎng)為1的正方形中隨機(jī)撒1 000粒豆子,有180粒落到陰影部分,據(jù)此估計(jì)陰影部分的面積為_(kāi)_______.
圖10-3-1
0.18 [由題意知,
==0.18.
∵S
6、正=1,∴S陰=0.18.]
5.設(shè)不等式組表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是________. 【導(dǎo)學(xué)號(hào):00090357】
1- [如圖所示,區(qū)域D為正方形OABC及其內(nèi)部,且區(qū)域D的面積S=4.又陰影部分表示的是區(qū)域D內(nèi)到坐標(biāo)原點(diǎn)的距離大于2的區(qū)域.易知該陰影部分的面積S陰=4-π,
∴所求事件的概率P==1-.]
(對(duì)應(yīng)學(xué)生用書(shū)第154頁(yè))
與長(zhǎng)度(角度)有關(guān)的幾何概型
(1)(20xx·全國(guó)卷Ⅰ)某公司的班車(chē)在7:30,8:00,8:30發(fā)車(chē),小明在7:50至8:30之間到達(dá)發(fā)車(chē)站乘坐班車(chē),且到達(dá)發(fā)車(chē)站的時(shí)刻
7、是隨機(jī)的,則他等車(chē)時(shí)間不超過(guò)10分鐘的概率是( )
A. B.
C. D.
圖10-3-2
(2)如圖10-3-2所示,四邊形ABCD為矩形,AB=,BC=1,在∠DAB內(nèi)作射線(xiàn)AP,則射線(xiàn)AP與線(xiàn)段BC有公共點(diǎn)的概率為_(kāi)_______.
(3)(20xx·江蘇高考)記函數(shù)f(x)=的定義域?yàn)镈.在區(qū)間[-4,5]上隨機(jī)取一個(gè)數(shù)x,則x∈D的概率是________.
(1)B (2) (3) [(1)如圖,7:50至8:30之間的時(shí)間長(zhǎng)度為40分鐘,而小明等車(chē)時(shí)間不超過(guò)10分鐘是指小明在7:50至8:00之間或8:20至8:30之間到達(dá)發(fā)
8、車(chē)站,此兩種情況下的時(shí)間長(zhǎng)度之和為20分鐘,由幾何概型概率公式知所求概率為P==.故選B.
(2)以A為圓心,以AD=1為半徑作圓弧交AC,AP,AB分別為C′,P′,B′.
依題意,點(diǎn)P′在上任何位置是等可能的,且射線(xiàn)AP與線(xiàn)段BC有公共點(diǎn),則事件“點(diǎn)P′在上發(fā)生”.
又在Rt△ABC中,易求∠BAC=∠B′AC′=.
故所求事件的概率P===.
(3)由6+x-x2≥0,解得-2≤x≤3,∴D=[-2,3].如圖,區(qū)間[-4,5]的長(zhǎng)度為9,定義域D的長(zhǎng)度為5,
∴P=.
]
[規(guī)律方法] 1.解答幾何概型問(wèn)題的關(guān)鍵在于弄清題中的考查對(duì)象和對(duì)象的活動(dòng)范圍,
9、當(dāng)考查對(duì)象為點(diǎn),且點(diǎn)的活動(dòng)范圍在線(xiàn)段上時(shí),用“線(xiàn)段長(zhǎng)度”為測(cè)度計(jì)算概率,求解的核心是確定點(diǎn)的邊界位置.
2.(1)第(2)題易出現(xiàn)“以線(xiàn)段BD為測(cè)度”計(jì)算幾何概型的概率,導(dǎo)致錯(cuò)求P=.
(2)當(dāng)涉及射線(xiàn)的轉(zhuǎn)動(dòng),扇形中有關(guān)落點(diǎn)區(qū)域問(wèn)題時(shí),應(yīng)以角對(duì)應(yīng)的弧長(zhǎng)的大小作為區(qū)域度量來(lái)計(jì)算概率.事實(shí)上,當(dāng)半徑一定時(shí),曲線(xiàn)弧長(zhǎng)之比等于其所對(duì)應(yīng)的圓心角的弧度數(shù)之比.
[變式訓(xùn)練1] (1)(20xx·唐山質(zhì)檢)設(shè)A為圓周上一點(diǎn),在圓周上等可能地任取一點(diǎn)與A連接,則弦長(zhǎng)超過(guò)半徑倍的概率是( ) 【導(dǎo)學(xué)號(hào):00090358】
A. B.
C. D.
(2)(20xx·山東高考)在[-
10、1,1]上隨機(jī)地取一個(gè)數(shù)k,則事件“直線(xiàn)y=kx與圓(x-5)2+y2=9相交”發(fā)生的概率為_(kāi)_______.
(1)B (2)[(1)作等腰直角△AOC和△AMC,B為圓上任一點(diǎn),則當(dāng)點(diǎn)B在上運(yùn)動(dòng)時(shí),弦長(zhǎng)|AB|>R,
∴P==.
(2)由直線(xiàn)y=kx與圓(x-5)2+y2=9相交,得<3,
即16k2<9,解得-
11、),…,(xn,yn),其中兩數(shù)的平方和小于1的數(shù)對(duì)共有m個(gè),則用隨機(jī)模擬的方法得到的圓周率π的近似值為( )
A. B.
C. D.
C [因?yàn)閤1,x2,…,xn,y1,y2,…,yn都在區(qū)間[0,1]內(nèi)隨機(jī)抽取,所以構(gòu)成的n個(gè)數(shù)對(duì)(x1,y1),(x2,y2),…,(xn,yn)都在正方形OABC內(nèi)(包括邊界),如圖所示.若兩數(shù)的平方和小于1,則對(duì)應(yīng)的數(shù)對(duì)在扇形OAC內(nèi)(不包括扇形圓弧上的點(diǎn)所對(duì)應(yīng)的數(shù)對(duì)),故在扇形OAC內(nèi)的數(shù)對(duì)有m個(gè).用隨機(jī)模擬的方法可得=,即=,所以π=.]
角度2 與線(xiàn)性規(guī)劃交匯問(wèn)題
(20xx·長(zhǎng)沙模擬)在區(qū)間[0,4]上隨機(jī)
12、取兩個(gè)實(shí)數(shù)x,y,使得x+2y≤8的概率為( )
A. B.
C. D.
D [由x,y∈[0,4]可知(x,y)構(gòu)成的區(qū)域是邊長(zhǎng)為4的正方形及其內(nèi)部,其中滿(mǎn)足x+2y≤8的區(qū)域?yàn)槿鐖D所示的陰影部分.
易知A(4,2),S正方形=16,S陰影==12.
故“使得x+2y≤8”的概率P==.]
[規(guī)律方法] 求解與面積有關(guān)的幾何概型的注意點(diǎn)
求解與面積有關(guān)的幾何概型時(shí),關(guān)鍵是弄清某事件對(duì)應(yīng)的面積,必要時(shí)可根據(jù)題意構(gòu)造兩個(gè)變量,把變量看成點(diǎn)的坐標(biāo),找到全部試驗(yàn)結(jié)果構(gòu)成的平面圖形,以便求解.
[變式訓(xùn)練2] (1)(20xx·全國(guó)卷Ⅰ)如圖10-3-3,
13、正方形ABCD內(nèi)的圖形來(lái)自中國(guó)古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對(duì)稱(chēng).在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自黑色部分的概率是( )
【導(dǎo)學(xué)號(hào):00090359】
圖10-3-3
A. B.
C. D.
(2)(20xx·莆田模擬)從區(qū)間(0,1)中任取兩個(gè)數(shù)作為直角三角形兩直角邊的長(zhǎng),則所取的兩個(gè)數(shù)使得斜邊長(zhǎng)不大于1的概率是( )
A. B.
C. D.
(1)B (2)B [(1)不妨設(shè)正方形ABCD的邊長(zhǎng)為2,則正方形內(nèi)切圓的半徑為1,可得S正方形=4.
由圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對(duì)稱(chēng),得
14、S黑=S白=S圓=,所以由幾何概型知所求概率P===.
故選B.
(2)任取的兩個(gè)數(shù)記為x,y,所在區(qū)域是正方形OABC內(nèi)部,而符合題意的x,y位于陰影區(qū)域內(nèi)(不包括x,y軸),故所求概率P==.
]
與體積有關(guān)的幾何概型
在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,點(diǎn)O為底面ABCD的中心,在正方體ABCD-A1B1C1D1內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)O的距離大于1的概率為( )
A. B.1-
C. D.1-
B [設(shè)“點(diǎn)P到點(diǎn)O的距離大于1”為事件A.
則事件A發(fā)生時(shí),點(diǎn)P位于以點(diǎn)O為球心,以1為半徑的半球的外部.
∴V正方體=23=8,V半球=π·13×=π.
∴P(A)==1-.]
[規(guī)律方法] 對(duì)于與體積有關(guān)的幾何概型問(wèn)題,關(guān)鍵是計(jì)算問(wèn)題的總體積(總空間)以及事件的體積(事件空間),對(duì)于某些較復(fù)雜的也可利用其對(duì)立事件求解.
[變式訓(xùn)練3] 如圖10-3-4,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,在正方體內(nèi)隨機(jī)取點(diǎn)M,則使四棱錐M-ABCD的體積小于的概率為_(kāi)_______.
圖10-3-4
[設(shè)四棱錐M-ABCD的高為h,由于V正方體=1.
且·SABCD·h<,
又SABCD=1,∴h<,
即點(diǎn)M在正方體的下半部分,
∴所求概率P==.]