新編高考數(shù)學(xué)浙江理科一輪【第六章】數(shù)列 第4講數(shù)列求和

上傳人:仙*** 文檔編號:62490270 上傳時間:2022-03-15 格式:DOC 頁數(shù):7 大?。?4.50KB
收藏 版權(quán)申訴 舉報 下載
新編高考數(shù)學(xué)浙江理科一輪【第六章】數(shù)列 第4講數(shù)列求和_第1頁
第1頁 / 共7頁
新編高考數(shù)學(xué)浙江理科一輪【第六章】數(shù)列 第4講數(shù)列求和_第2頁
第2頁 / 共7頁
新編高考數(shù)學(xué)浙江理科一輪【第六章】數(shù)列 第4講數(shù)列求和_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)浙江理科一輪【第六章】數(shù)列 第4講數(shù)列求和》由會員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)浙江理科一輪【第六章】數(shù)列 第4講數(shù)列求和(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、新編高考數(shù)學(xué)復(fù)習(xí)資料 第4講 數(shù)列求和 一、選擇題 1.在等差數(shù)列中,,則的前5項和=( ) A.7 B.15 C.20 D.25 解析 . 答案 B 2.若數(shù)列{an}的通項公式是an=(-1)n(3n-2),則a1+a2+…+a10=(  ). A.15 B.12 C.-12 D.-15 解析 設(shè)bn=3n-2,則數(shù)列{bn}是以1為首項,3為公差的等差數(shù)列,所以a1+a2+…+a9+a10=(-b1)+b2+…+(-b9)+b10=(b2-b1)+(b

2、4-b3)+…+(b10-b9)=5×3=15. 答案 A 3.在數(shù)列{an}中,an=,若{an}的前n項和為,則項數(shù)n為(  ). A.2 011 B.2 012 C.2 013 D.2 014 解析 ∵an==-,∴Sn=1-==,解得n=2 013. 答案 C 4.數(shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前60項和為(  ). A.3 690 B.3 660 C.1 845 D.1 830 解析 當n=2k時,a2k+1+a2k=4k-1, 當n=2k-1時,a2k-a2k-1=4k-3, ∴a2k+1

3、+a2k-1=2,∴a2k+1+a2k+3=2, ∴a2k-1=a2k+3,∴a1=a5=…=a61. ∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(4×30-1)==30×61=1 830. 答案 D 5. 已知數(shù)列{an}的通項公式為an=2n+1,令bn=(a1+a2+…+an),則數(shù)列{bn}的前10項和T10=(  ) A.70 B.75 C.80 D.85 解析 由已知an=2n+

4、1,得a1=3,a1+a2+…+an==n(n+2), 則bn=n+2,T10==75,故選B. 答案 B 6.數(shù)列{an}滿足an+an+1=(n∈N*),且a1=1,Sn是數(shù)列{an}的前n項和,則S21=(  ). A. B.6 C.10 D.11 解析 依題意得an+an+1=an+1+an+2=,則an+2=an,即數(shù)列{an}中的奇數(shù)項、偶數(shù)項分別相等,則a21=a1=1,S21=(a1+a2)+(a3+a4)+…+(a19+a20)+a21=10(a1+a2)+a21=10×+1=6,故選B. 答案 B 二、填空題 7.在等比數(shù)列{an}中,

5、若a1=,a4=-4,則公比q=________;|a1|+|a2|+…+|an|=________. 解析 設(shè)等比數(shù)列{an}的公比為q,則a4=a1q3,代入數(shù)據(jù)解得q3=-8,所以q=-2;等比數(shù)列{|an|}的公比為|q|=2,則|an|=×2n-1,所以|a1|+|a2|+|a3|+…+|an|=(1+2+22+…+2n-1)=(2n-1)=2n-1-. 答案?。? 2n-1- 8.等比數(shù)列{an}的前n項和Sn=2n-1,則a+a+…+a=________. 解析 當n=1時,a1=S1=1, 當n≥2時,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1, 又

6、∵a1=1適合上式.∴an=2n-1,∴a=4n-1. ∴數(shù)列{a}是以a=1為首項,以4為公比的等比數(shù)列. ∴a+a+…+a==(4n-1). 答案 (4n-1) 9.已知等比數(shù)列{an}中,a1=3,a4=81,若數(shù)列{bn}滿足bn=log3an,則數(shù)列的前n項和Sn=________. 解析 設(shè)等比數(shù)列{an}的公比為q,則=q3=27,解得q=3.所以an=a1qn-1=3×3n-1=3n,故bn=log3an=n, 所以==-. 則Sn=1-+-+…+-=1-=. 答案  10.設(shè)f(x)=,利用倒序相加法,可求得f+f+…+f的值為________. 解析 當

7、x1+x2=1時,f(x1)+f(x2)=+==1. 設(shè)S=f+f+…+f,倒序相加有2S=++…+f+f=10,即S=5. 答案 5 三、解答題 11.等差數(shù)列{an}的各項均為正數(shù),a1=3,前n項和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960. (1)求an與bn; (2)求++…+. 解 (1)設(shè){an}的公差為d,{bn}的公比為q,則d為正數(shù),an=3+(n-1)d,bn=qn-1. 依題意有 解得或(舍去) 故an=3+2(n-1)=2n+1,bn=8n-1. (2)Sn=3+5+…+(2n+1)=n(n+2), 所以++…

8、+=+++…+ = = =-. 12.已知數(shù)列{an}的前n項和為Sn,且a1=1,an+1=Sn(n=1,2,3,…). (1)求數(shù)列{an}的通項公式; (2)設(shè)bn=log(3an+1)時,求數(shù)列的前n項和Tn. 解 (1)由已知得 得到an+1=an(n≥2). ∴數(shù)列{an}是以a2為首項,以為公比的等比數(shù)列. 又a2=S1=a1=, ∴an=a2×n-2=n-2(n≥2). 又a1=1不適合上式,∴an= (2)bn=log(3an+1)=log=n. ∴==-. ∴Tn=+++…+ =+++…+ =1-=. 13.設(shè)數(shù)列{an}滿足a1+3a2

9、+32a3+…+3n-1an=,n∈N*. (1)求數(shù)列{an}的通項; (2)設(shè)bn=,求數(shù)列{bn}的前n項和Sn. 思維啟迪:(1)由已知寫出前n-1項之和,兩式相減.(2)bn=n·3n的特點是數(shù)列{n}與{3n}之積,可用錯位相減法. 解 (1)∵a1+3a2+32a3+…+3n-1an=, ① ∴當n≥2時, a1+3a2+32a3+…+3n-2an-1=, ② ①-②得3n-1an=,∴an=. 在①中,令n=1,得a1=,適合an=,∴an=. (2)∵bn=,∴bn=n·3n. ∴Sn=3+2×32+3×33+…+n·3n,

10、 ③ ∴3Sn=32+2×33+3×34+…+n·3n+1. ④ ④-③得2Sn=n·3n+1-(3+32+33+…+3n), 即2Sn=n·3n+1-,∴Sn=+. 探究提高 解答本題的突破口在于將所給條件式視為數(shù)列{3n-1an}的前n項和,從而利用an與Sn的關(guān)系求出通項3n-1an,進而求得an;另外乘公比錯位相減是數(shù)列求和的一種重要方法,但值得注意的是,這種方法運算過程復(fù)雜,運算量大,應(yīng)加強對解題過程的訓(xùn)練,重視運算能力的培養(yǎng). 14.將數(shù)列{an}中的所有項按每一行比上一行多兩項的規(guī)則排成如下數(shù)表: a1 a2 a3 a4 a5 a

11、6 a7 a8 a9 … 已知表中的第一列數(shù)a1,a2,a5,…構(gòu)成一個等差數(shù)列,記為{bn},且b2=4,b5=10.表中每一行正中間一個數(shù)a1,a3,a7,…構(gòu)成數(shù)列{cn},其前n項和為Sn. (1)求數(shù)列{bn}的通項公式; (2)若上表中,從第二行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,公比為同一個正數(shù),且a13=1. ①求Sn; ②記M={n|(n+1)cn≥λ,n∈N*},若集合M的元素個數(shù)為3,求實數(shù)λ的取值范圍. 解 (1)設(shè)等差數(shù)列{bn}的公差為d, 則解得 所以bn=2n. (2)①設(shè)每一行組成的等比數(shù)列的公比為q. 由于前n行共有1+3+

12、5+…+(2n-1)=n2個數(shù),且32<13<42,a10=b4=8, 所以a13=a10q3=8q3,又a13=1,所以解得q=. 由已知可得cn=bnqn-1,因此cn=2n·n-1=. 所以Sn=c1+c2+c3+…+cn=+++…+, Sn=++…++, 因此Sn=+++…+-=4--=4-, 解得Sn=8-. ②由①知cn=,不等式(n+1)cn≥λ,可化為≥λ. 設(shè)f(n)=, 計算得f(1)=4,f(2)=f(3)=6,f(4)=5,f(5)=. 因為f(n+1)-f(n)=, 所以當n≥3時,f(n+1)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!