《新編高三人教版數(shù)學(xué)理一輪復(fù)習(xí)課時(shí)作業(yè):第2章 第12節(jié) 導(dǎo)數(shù)的應(yīng)用(一)》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高三人教版數(shù)學(xué)理一輪復(fù)習(xí)課時(shí)作業(yè):第2章 第12節(jié) 導(dǎo)數(shù)的應(yīng)用(一)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)作業(yè)一、選擇題1(20 xx遼寧高考)函數(shù) y12x2ln x 的單調(diào)遞減區(qū)間為()A(1,1B(0,1C1,)D(0,)B對(duì)函數(shù) y12x2ln x 求導(dǎo),得 yx1xx21x(x0),令x21x0,x0,解得 x(0,1因此函數(shù) y12x2ln x 的單調(diào)遞減區(qū)間為(0,1故選 B.2(20 xx荊州市質(zhì)檢)設(shè)函數(shù) f(x)在 R 上可導(dǎo),其導(dǎo)函數(shù)是 f(x),且函數(shù) f(x)在x2 處取得極小值,則函數(shù) yxf(x)的圖象可能是()Cf(x)在 x2 處取得極小值,即 x2,f(x)0;x2,f(x)0,那么 yxf(x)過點(diǎn)(0,0)及(2,0)當(dāng) x2 時(shí),x0,f(x)0,則
2、y0;當(dāng)2x0 時(shí),x0,f(x)0,y0;當(dāng) x0 時(shí),f(x)0,y0,故 C 正確3 (理)(20 xx遼寧高考)設(shè)函數(shù) f(x)滿足 x2f(x)2xf(x)exx, f(2)e28, 則 x0 時(shí),f(x)()A有極大值,無(wú)極小值B有極小值,無(wú)極大值C既有極大值又有極小值D既無(wú)極大值也無(wú)極小值D令 F(x)x2f(x),則 F(x)x2f(x)2xf(x)exx,F(xiàn)(2)4f(2)e22.由 x2f(x)2xf(x)exx,得 x2f(x)exx2xf(x)ex2x2f(x)x,f(x)ex2F(x)x3.令(x)ex2F(x),則(x)ex2F(x)ex2exxex(x2)x.(x
3、)在(0,2)上單調(diào)遞減,在(2,)上單調(diào)遞增,(x)的最小值為(2)e22F(2)0.(x)0.又 x0,f(x)0.f(x)在(0,)上單調(diào)遞增f(x)既無(wú)極大值也無(wú)極小值故選 D.3(文)(20 xx福建高考)設(shè)函數(shù) f(x)的定義域?yàn)?R,x0(x00)是 f(x)的極大值點(diǎn),以下結(jié)論一定正確的是()AxR,f(x)f(x0)Bx0是 f(x)的極小值點(diǎn)Cx0是f(x)的極小值點(diǎn)Dx0是f(x)的極小值點(diǎn)D由函數(shù)極大值的概念知 A 錯(cuò)誤; 因?yàn)楹瘮?shù) f(x)的圖象與 f(x)的圖象關(guān)于y 軸對(duì)稱, 所以x0是 f(x)的極大值點(diǎn) B 選項(xiàng)錯(cuò)誤; 因?yàn)?f(x)的圖象與f(x)的圖象關(guān)于
4、 x 軸對(duì)稱,所以 x0是f(x)的極小值點(diǎn)故 C 選項(xiàng)錯(cuò)誤;因?yàn)?f(x)的圖象與f(x)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,所以x0是f(x)的極小值點(diǎn)故 D 正確4若 f(x)12(x2)2bln x 在(1,)上是減函數(shù),則 b 的取值范圍是()A1,)B(1,)C(,1D(,1)C由題意可知 f(x)(x2)bx0 在(1,)上恒成立,即 bx(x2)在 x(1,)上恒成立,由于(x)x(x2)x22x(x(1,)的值域是(1,),故只要 b1 即可正確選項(xiàng)為 C.5. (20 xx湖北高考)已知函數(shù) f(x)x(ln xax)有兩個(gè)極值點(diǎn),則實(shí)數(shù) a 的取值范圍是()A(,0)B.0,12C
5、(0,1)D(0,)Bf(x)ln xaxx1xaln x2ax1,函數(shù) f(x)有兩個(gè)極值點(diǎn),即ln x2ax10 有兩個(gè)不同的根(在正實(shí)數(shù)集上),即函數(shù) g(x)ln x1x與函數(shù) y2a 在(0,)上有兩個(gè)不同交點(diǎn)因?yàn)?g(x)ln xx2,所以 g(x)在(0,1)上遞增,在(1,)上遞減,所以 g(x)maxg(1)1,如圖若 g(x)與 y2a 有兩個(gè)不同交點(diǎn),須 02a1.即 0a12,故選 B.6函數(shù) f(x)x33x1,若對(duì)于區(qū)間3,2上的任意 x1,x2,都有|f(x1)f(x2)|t,則實(shí)數(shù) t 的最小值是()A20B18C3D0A因?yàn)?f(x)3x233(x1)(x1)
6、,令 f(x)0,得 x1,所以1,1為函數(shù)的極值點(diǎn)又 f(3)19,f(1)1,f(1)3,f(2)1,所以在區(qū)間3,2上 f(x)max1,f(x)min19.又由題設(shè)知在區(qū)間3,2上 f(x)maxf(x)mint,從而 t20,所以 t 的最小值是 20.二、填空題7已知函數(shù) f(x)x3mx2(m6)x1 既存在極大值又存在極小值,則實(shí)數(shù) m的取值范圍是_解析f(x)3x22mxm60 有兩個(gè)不等實(shí)根,即4m212(m6)0.所以 m6 或 m3.答案(,3)(6,)8(20 xx濟(jì)寧模擬)若函數(shù) f(x)x36bx3b 在(0,1)內(nèi)有極小值,則實(shí)數(shù) b 的取值范圍是_解析f(x)
7、3x26b.當(dāng) b0 時(shí),f(x)0 恒成立,函數(shù) f(x)無(wú)極值當(dāng) b0 時(shí),令 3x26b0 得 x 2b.由函數(shù) f(x)在 (0,1)內(nèi)有極小值,可得 0 2b1,0b12.答案0,129已知函數(shù) f(x)12x24x3ln x 在t,t1上不單調(diào),則 t 的取值范圍是_解析由題意知f(x)x43xx24x3x(x1) (x3)x, 由f(x)0 得函數(shù) f(x)的兩個(gè)極值點(diǎn)為 1,3,則只要這兩個(gè)極值點(diǎn)有一個(gè)在區(qū)間(t,t1)內(nèi), 函數(shù) f(x)在區(qū)間t, t1上就不單調(diào), 由 t1t1 或者 t3t1,得 0t1 或者 2t3.答案(0,1)(2,3)三、解答題10已知函數(shù) f(x
8、)ax2bln x 在 x1 處有極值12.(1)求 a,b 的值;(2)判斷函數(shù) yf(x)的單調(diào)性并求出單調(diào)區(qū)間解析(1)f(x)2axbx.又 f(x)在 x1 處有極值12.f(1)12,f(1)0,即a12,2ab0.解得 a12,b1.(2)由(1)可知 f(x)12x2ln x,其定義域是(0,),且 f(x)x1x(x1) (x1)x.由 f(x)0,得 0 x0,得 x1.所以函數(shù) yf(x)的單調(diào)減區(qū)間是(0,1),單調(diào)增區(qū)間是(1,)11(20 xx蘭州調(diào)研)已知實(shí)數(shù) a0,函數(shù) f(x)ax(x2)2(xR)有極大值 32.(1)求函數(shù) f(x)的單調(diào)區(qū)間;(2)求實(shí)數(shù)
9、 a 的值解析(1)f(x)ax34ax24ax,f(x)3ax28ax4a.令 f(x)0,得 3ax28ax4a0.a0,3x28x40,x23或 x2.a0,當(dāng) x,23 或 x(2,)時(shí),f(x)0.函數(shù) f(x)的單調(diào)遞增區(qū)間為,23 和(2,);當(dāng) x23,2時(shí),f(x)0,函數(shù) f(x)的單調(diào)遞減區(qū)間為23,2.(2)當(dāng) x,23 時(shí),f(x)0;當(dāng) x23,2時(shí),f(x)0;當(dāng) x(2,)時(shí),f(x)0,f(x)在 x23時(shí)取得極大值,即 a23232232.a27.12(20 xx鄭州質(zhì)量預(yù)測(cè))已知函數(shù) f(x)1xaxln x.(1)當(dāng) a12時(shí),求 f(x)在1,e上的最大值和最小值;(2)若函數(shù) g(x)f(x)14x 在1,e上為增函數(shù),求正實(shí)數(shù) a 的取值范圍解析(1)當(dāng) a12時(shí),f(x)2(1x)xln x,f(x)x2x2,令 f(x)0,得 x2,當(dāng) x1,2)時(shí),f(x)0,故 f(x)在(2,e上單調(diào)遞增,故 f(x)minf(2)ln 21.又f(1)0,f(e)2ee0),設(shè)(x)ax24ax4,由題意知,只需(x)0 在1,e上恒成立即可滿足題意a0,函數(shù)(x)的圖象的對(duì)稱軸為 x2,只需(1)3a40,即 a43即可故正實(shí)數(shù) a 的取值范圍為43,.