《新編高考數(shù)學一輪復習學案訓練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學案 文 北師大版》由會員分享,可在線閱讀,更多相關《新編高考數(shù)學一輪復習學案訓練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學案 文 北師大版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第四節(jié) 數(shù)列求和
[考綱傳真] 1.掌握等差、等比數(shù)列的前n項和公式.2.掌握特殊的非等差、等比數(shù)列的幾種常見的求和方法.
(對應學生用書第74頁)
[基礎知識填充]
1.公式法
(1)等差數(shù)列的前n項和公式:
Sn==na1+d;
(2)等比數(shù)列的前n項和公式:
Sn=
2.分組轉化法
把數(shù)列的每一項分成兩項或幾項,使其轉化為幾個等差、等比數(shù)列,再求解.
3.裂項相消法
(1)把數(shù)列的通項拆成兩項之差,在求和時中間的一些項可以相互抵消,從而求得其和.
(2)裂項時常用的三種變形:
①=;
②==;
③=-.
4.
2、錯位相減法
如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應項之積構成的,這個數(shù)列的前n項和可用錯位相減法求解.
5.倒序相加法
如果一個數(shù)列{an}的前n項中與首末兩端等“距離”的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前n項和即可用倒序相加法求解.
6.并項求和法
一個數(shù)列的前n項和中,可兩兩結合求解,則稱之為并項求和.形如an=(-1)nf(n)類型,可采用兩項合并求解.
例如,Sn=1002-992+982-972+…+22-12
=(100+99)+(98+97)+…+(2+1)=5 050.
[基本能力自測]
1.(思考辨析)判斷下列結論
3、的正誤.(正確的打“√”,錯誤的打“×”)
(1)如果數(shù)列{an}為等比數(shù)列,且公比不等于1,則其前n項和Sn=.( )
(2)當n≥2時,=.( )
(3)求Sn=a+2a2+3a3+…+nan之和時只要把上式等號兩邊同時乘以a即可根據(jù)錯位相減法求得.( )
(4)如果數(shù)列{an}是周期為k(k為大于1的正整數(shù))的周期數(shù)列,那么Skm=mSk.( )
[答案] (1)√ (2)√ (3)× (4)√
2.(教材改編)數(shù)列{an}的前n項和為Sn,若an=,則S5等于( )
A.1 B.
C. D.
B [∵an==-,
∴S
4、5=a1+a2+…+a5=1-+-+…-=.]
3.(20xx·開封模擬)已知等比數(shù)列{an}中,a2·a8=4a5,等差數(shù)列{bn}中,b4+b6=a5,則數(shù)列{bn}的前9項和S9等于( ) 【導學號:00090174】
A.9 B.18
C.36 D.72
B [∵a2·a8=4a5,即a=4a5,∴a5=4,
∴a5=b4+b6=2b5=4,∴b5=2,
∴S9=9b5=18,故選B.]
4.若數(shù)列{an}的通項公式為an=2n+2n-1,則數(shù)列{an}的前n項和Sn=__________.
2n+1-2+n2 [Sn=+=2n+1-2+n2.]
5.3
5、·2-1+4·2-2+5·2-3+…+(n+2)·2-n=__________.
4- [設S=3×+4×+5×+…+(n+2)×,
則S=3×+4×+5×+…+(n+2)×.
兩式相減得S=3×+-.
∴S=3+-
=3+-=4-.]
(對應學生用書第74頁)
分組轉化求和
(20xx·北京高考)已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通項公式;
(2)設cn=an+bn,求數(shù)列{cn}的前n項和.
[解] (1)設等比數(shù)列{bn}的公比為q,則q===3,
所以b1=
6、=1,b4=b3q=27,所以bn=3n-1(n=1,2,3,…). 2分
設等差數(shù)列{an}的公差為D.
因為a1=b1=1,a14=b4=27,
所以1+13d=27,即d=2.
所以an=2n-1(n=1,2,3,…). 5分
(2)由(1)知an=2n-1,bn=3n-1.
因此cn=an+bn=2n-1+3n-1. 7分
從而數(shù)列{cn}的前n項和
Sn=1+3+…+(2n-1)+1+3+…+3n-1
=+=n2+. 12分
[規(guī)律方法] 分組轉化法求和的常見類型
(1)若an =bn±cn,且{bn},{cn}為等差或等比數(shù)列,則可
7、采用分組求和法求{an}的前n項和.
(2)通項公式為an=的數(shù)列,其中數(shù)列{bn},{cn}是等比數(shù)列或等差數(shù)列,可采用分組求和法求和.
易錯警示:注意在含有字母的數(shù)列中對字母的分類討論.
[變式訓練1] (20xx·浙江高考)設數(shù)列{an}的前n項和為Sn,已知S2=4,an+1=2Sn+1,n∈N*.
(1)求通項公式an;
(2)求數(shù)列{|an-n-2|}的前n項和.
[解] (1)由題意得則 2分
又當n≥2時,由an+1-an=(2Sn+1)-(2Sn-1+1)=2an,得an+1=3an,
所以數(shù)列{an}的通項公式為an=3n-1,n∈N*. 5分
8、
(2)設bn=|3n-1-n-2|,n∈N*,則b1=2,b2=1.
當n≥3時,由于3n-1>n+2,故bn=3n-1-n-2,n≥3. 8分
設數(shù)列{bn}的前n項和為Tn,則T1=2,T2=3,
當n≥3時,Tn=3+-=,
所以Tn= 12分
裂項相消法求和
(20xx·鄭州模擬)若An和Bn分別表示數(shù)列{an}和{bn}的前n項的和,對任意正整數(shù)n,an=2(n+1),3An-Bn=4n.
(1)求數(shù)列{bn}的通項公式;
(2)記cn=,求{cn}的前n項和Sn.
[解] (1)由于an=2(n+1),∴{an}為等差數(shù)列,且a1=4.
9、2分
∴An===n2+3n,
∴Bn=3An-4n=3(n2+3n)-4n=3n2+5n,
當n=1時,b1=B1=8,
當n≥2時,bn=Bn-Bn-1=3n2+5n-[3(n-1)2+5(n-1)]=6n+2.由于b1=8適合上式,∴bn=6n+2. 5分
(2)由(1)知cn==
=, 7分
∴Sn=
=
=-. 12分
[規(guī)律方法] 1.裂項相消法求和就是將數(shù)列中的每一項裂成兩項或多項,使這些裂開的項出現(xiàn)有規(guī)律的相互抵捎,要注意消去了哪些項,保留了哪些項,從而達到求和的目的.
2.消項規(guī)律:消項后前邊剩幾項,后邊就剩幾項,前邊剩
10、第幾項,后邊就剩倒數(shù)第幾項.
[變式訓練2] (20xx·全國卷Ⅲ)設數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n.
(1)求{an}的通項公式;
(2)求數(shù)列的前n項和. 【導學號:00090175】
[解] (1)因為a1+3a2+…+(2n-1)an=2n,故當n≥2時,
a1+3a2+…+(2n-3)an-1=2(n-1), 2分
兩式相減得(2n-1)an=2,
所以an=(n≥2). 4分
又由題設可得a1=2,滿足上式,
所以{an}的通項公式為an=. 6分
(2)記的前n項和為Sn.
由(1)知==-,
11、 9分
則Sn=-+-+…+-=. 12分
錯位相減法求和
(20xx·山東高考)已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1.
(1)求數(shù)列{bn}的通項公式;
(2)令cn=,求數(shù)列{cn}的前n項和Tn.
[解] (1)由題意知當n≥2時,an=Sn-Sn-1=6n+5.
當n=1時,a1=S1=11,符合上式.
所以an=6n+5. 2分
設數(shù)列{bn}的公差為D.
由即
解得所以bn=3n+1. 5分
(2)由(1)知cn==3(n+1)·2n+1. 7分
又Tn=c1+c2+…+
12、cn,
得Tn=3×[2×22+3×23+…+(n+1)×2n+1],
2Tn=3×[2×23+3×24+…+(n+1)×2n+2], 9分
兩式作差,得-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]
=3×
=-3n·2n+2,所以Tn=3n·2n+2. 12分
[規(guī)律方法] 1.如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項和時,可采用錯位相減法求和,一般是和式兩邊同乘以等比數(shù)列{bn}的公比,若{bn}的公比為參數(shù),應分公比等于1和不等于1兩種情況討論.
2.在書寫“Sn”與“qSn”的表達式時應特別注
13、意將兩式“錯項對齊”,即公比q的同次冪項相減,轉化為等比數(shù)列求和.
[變式訓練3] (20xx·天津高考)已知{an}為等差數(shù)列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通項公式;
(2)求數(shù)列{a2nbn}的前n項和(n∈N*).
[解] (1)設等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q.
由已知b2+b3=12,得b1(q+q2)=12.
而b1=2,所以q2+q-6=0,解得q=-3或q=2.
又因為q>0,所以q=2.
所以b
14、n=2n. 3分
由b3=a4-2a1,可得3d-a1=8.①.
由S11=11b4,可得a1+5d=16.②,
聯(lián)立①②,解得a1=1,d=3,
由此可得an=3n-2. 6分
所以,數(shù)列{an}的通項公式為an=3n-2,數(shù)列{bn}的通項公式為bn=2n.
(2)設數(shù)列{a2nbn}的前n項和為Tn.由a2n=6n-2,
得Tn=4×2+10×22+16×23+…+(6n-2)×2n,
2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1. 8分
上述兩式相減,得
-Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16, 10分
所以Tn=(3n-4)2n+2+16.
所以,數(shù)列{a2nbn}的前n項和為(3n-4)2n+2+16. 12分