《五年級數(shù)學(xué)上冊7《數(shù)學(xué)廣角--植樹問題》測試題》由會員分享,可在線閱讀,更多相關(guān)《五年級數(shù)學(xué)上冊7《數(shù)學(xué)廣角--植樹問題》測試題(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-----傾情為你奉上
五年級數(shù)學(xué)上冊7《數(shù)學(xué)廣角--植樹問題》測試題
《數(shù)學(xué)廣角──植樹問題》同步試題
一、填空
1.學(xué)校有一條長60米的小道,計(jì)劃在道路一旁栽樹,每隔3米栽一棵,有( )個(gè)間隔。如果兩端都各栽一棵樹,那么共需( )棵樹苗;如果兩端都不栽樹,那么共需( )棵樹苗;如果只有一端栽樹,那么共需( )棵樹苗。
考查目的:考查在一條線段上植樹問題的三種情況,正確區(qū)分植樹棵數(shù)和間隔數(shù)之間的三種關(guān)系。
答案:20;21;19;20。
解析:先用60÷3求出有20個(gè)間隔,再根據(jù)在一條線段上植樹問題的三種情況的數(shù)學(xué)模型解答:如果兩端都植樹,棵數(shù)=間
2、隔數(shù)+1;如果兩端都不植樹,棵數(shù)=間隔數(shù)-1;如果一端植一端不植,棵數(shù)=間隔數(shù)。
2.把10根橡皮筋連接成一個(gè)圈,需要打( )個(gè)結(jié)。
考查目的:考查在封閉曲線上的植樹問題(間隔數(shù)=植樹棵數(shù))。
答案:10。
解析:首先明確這道題是在封閉曲線上的植樹問題,有10根橡皮筋相當(dāng)于間隔數(shù)是10,打結(jié)的個(gè)數(shù)就相當(dāng)于植樹棵數(shù)。因?yàn)樵诜忾]曲線上間隔數(shù)=植樹棵數(shù),所以打結(jié)的個(gè)數(shù)是10。
3.在一個(gè)正方形的每條邊上擺4枚棋子,四條邊上最多能擺( )枚,最少能擺( )枚。
考查目的:考查封閉圖形的植樹問題中,角上是否植樹會決定植樹的總棵樹。
答案:16;12。
解析:正方形每條邊上
3、擺4枚棋子,有兩種擺法:四個(gè)角都擺棋子和四個(gè)角都不擺棋子。當(dāng)四個(gè)角都不擺棋子時(shí),四條邊上擺的棋子最多,一共能擺4×4=16枚棋子;當(dāng)四個(gè)角都擺棋子時(shí),角上的棋子同時(shí)屬于相鄰的兩條邊,這時(shí)擺的棋子總數(shù)最少,要減去角上重復(fù)的4枚棋子,所以最少能擺4×4-4=12枚棋子。
4.豆豆和玲玲同住一幢樓,每層樓之間有20 級臺階,豆豆住二樓,玲玲住五樓。豆豆要從自己家到玲玲家去找她玩,需要走( )級臺階。
考查目的:考查植樹問題數(shù)學(xué)模型的逆向應(yīng)用。
答案:60
解析:每層樓之間有20級臺階,相當(dāng)于間隔是20;從二樓到五樓有3個(gè)間隔,求需要走多少級臺階也就是求總數(shù),所以用20×3,得到答案為
4、60。
5.如下圖,每兩塊正方形瓷磚中間貼一塊長方形彩磚。像這樣一共貼了50塊長方形彩磚,那么正方形瓷磚有( )塊(第一塊和最后一塊都是正方形瓷磚)。
考查目的:考查學(xué)生觀察和運(yùn)用植樹問題的數(shù)學(xué)模型解決實(shí)際問題的能力。
答案:51。
解析:觀察圖中共有9塊長方形彩磚,10塊正方形瓷磚。由于第一塊和最后一塊都是正方形瓷磚,所以正方形瓷磚比長方形彩磚多1塊,長方形彩磚有50塊,那么正方形瓷磚就有51塊。
6.15個(gè)同學(xué)在操場上圍成一個(gè)圓圈做游戲,每相鄰兩個(gè)同學(xué)之間的距離都是2 ,這個(gè)圓圈的周長是( )。
考查目的:考查在封閉曲線上的植樹問題的逆向應(yīng)用(即已知間隔距離和植樹棵
5、數(shù),求全長)。
答案:30。
解析:這道題是在封閉曲線上的植樹問題,學(xué)生數(shù)量=間隔數(shù),間隔數(shù)是15;間距是2 ,全長=間距×間隔數(shù),所以圓圈的周長是2×15=30(米)。
7.一座樓房每上一層要走18級臺階,王芳回家共上了108級臺階,她家住在( )樓。
考查目的:考查植樹問題數(shù)學(xué)模型在生活中的實(shí)際應(yīng)用。
答案:7。
解析:這道題可以看作是兩端都栽的植樹問題,先用總數(shù)÷間距求出間隔數(shù)(108÷18=6),在兩端都栽的情況下,植樹棵數(shù)=間隔數(shù)+1,因此6+1=7,王芳家住7樓。
8.小東把一些5角的硬幣平均排列在一張正方形紙的周邊,每邊的硬幣數(shù)相等,這些硬幣的總面值是
6、12元。每邊最多能放( )枚硬幣。
考查目的:考查用封閉曲線上的植樹問題模型綜合解決問題的能力。
答案:7。
解析:首先用12÷0.5=24,求出一共有24枚硬幣。根據(jù)在封閉曲線上的植樹問題模型,正方形四周有24枚硬幣就有24個(gè)間隔,24÷4=6,每條邊有6個(gè)間隔。要使每邊硬幣數(shù)量最多,就要兩端都放。在兩端都栽的植樹問題中,植樹棵數(shù)=間隔數(shù)+1,因此每邊最多能放6+1=7枚硬幣。
二、選擇
1.7路公共汽車行駛路線全長8千米,每相鄰兩站的距離是1千米。一共有幾個(gè)車站?正確的算式是( )。
A. 7÷1+1 B. 8÷1-1 . 8÷1+1
考查目的:考查學(xué)生是否能正
7、確運(yùn)用植樹問題的數(shù)學(xué)模型解決問題。
答案:
解析:本題首尾都要設(shè)車站,屬于在一條線段上兩端都栽的植樹問題。一共有幾個(gè)車站也就是求植樹棵數(shù),植樹棵數(shù)=間隔數(shù)+1,因此應(yīng)該用8÷1+1,正確答案是。選項(xiàng)A 錯(cuò)在求間隔數(shù)的方法,應(yīng)該用全長8 k除以每相鄰兩站的距離,而不是7÷1,教師應(yīng)提醒學(xué)生認(rèn)真審題。
2.一根木頭長10米,要把它平均分成5段。每鋸下一段需要8分鐘,鋸?fù)暌还惨ǘ嗌俜昼姡? 這道題屬于哪種類型?( )
A. 不是植樹問題 B. 兩端都栽的植樹問題 . 兩端都不栽的植樹問題
考查目的:考查學(xué)生能否正確分辨生活中的植樹問題的具體類型。
答案:
解析:鋸木頭
8、中隱藏著總數(shù)和間隔數(shù)之間的關(guān)系,也屬于植樹問題。本題屬于在一條線段上植樹兩端都不栽的情況,因此正確答案是。
3.工程隊(duì)埋電線桿,每隔40 埋一根,連兩端在內(nèi),共埋71根。這段路全長( )米。
A. 40×(71+1)=2880 B. 40×71=2840 . 40×(71-1)=2800
考查目的:考查學(xué)生能否正確區(qū)分在一條線段上植樹的三種情況的不同數(shù)量關(guān)系。
答案:
解析:本題是在一條線段上兩端都栽的植樹問題的逆向應(yīng)用,全長=間距×間隔數(shù),在兩端都栽的情況下,間隔數(shù)=植樹棵數(shù)-1,因此正確答案是。
4.小華和爺爺同時(shí)上樓,小華上樓的速度是爺爺?shù)?倍,當(dāng)爺爺?shù)竭_(dá)4樓時(shí),
9、小華到了( )樓。
A. 8 B. 7 . 6
考查目的:考查學(xué)生是否能綜合運(yùn)用植樹問題的數(shù)學(xué)模型靈活解題。
答案:B
解析:爺爺?shù)竭_(dá)4樓走了3層樓梯,小華的速度是爺爺?shù)?倍,這時(shí)小華應(yīng)該走了6層樓梯,所以小華應(yīng)該到了7樓,正確答案是B。如果學(xué)生沒有按植樹問題思路思考,直接用4×2=8,就會出現(xiàn)選A的錯(cuò)誤。
5.一根20 長的長繩,可以剪成( )根2 長的短繩,要剪( )次。
A. 10;9 B. 10;10 . 9;10
考查目的:考查學(xué)生能否分清在一條線段上的植樹問題中的間隔數(shù)和植樹棵數(shù)。
答案:A
解析:本題可以用植樹問題的思想方法解決。要求20 的長
10、繩可以剪成幾根2 長的短繩,也就是求20里面有幾個(gè)2,用20÷2=10,也就是剪成10段;剪的次數(shù)比段數(shù)少1,10-1=9,要剪9次,所以正確答案是A。
三、解答
1.星光小區(qū)車位不足,在小區(qū)路的一邊每5 安置一個(gè)車位,用“⊥”標(biāo)志隔開,在一段100 長的路邊最多可停放多少輛車?需要畫多少個(gè)“⊥”標(biāo)志?
考查目的:考查學(xué)生用植樹問題的數(shù)學(xué)模型解決生活中實(shí)際問題的能力。
答案:①100÷5=20(輛);
?、?0-1=19(個(gè))。
答:最多可停放20輛車,需要畫19個(gè)“⊥”標(biāo)志。
解析:路的兩端不用畫“⊥”標(biāo)志,本題相當(dāng)于在一條線段上兩端都不栽的植樹問題。先用100÷5
11、=20,求出有20個(gè)間隔,即可以停放20輛車;再用間隔數(shù)-1,求出植樹棵數(shù), 20-1=19,也就是需要畫19個(gè)“⊥”標(biāo)志。
2.一條小道兩旁,每隔5米種一棵樹(兩端都栽),共種202棵樹,這條路長多少米?
考查目的:考查在一條線段上植樹問題的逆向應(yīng)用。
答案:202÷2=101(棵)
101-1=100(段)
5×100=500(米)
答:這條小道長500米。
解析:首先審題時(shí)注意,是小道兩旁共種202棵樹,先用202÷2=101,求出道路一邊植樹101棵。在兩端都栽的情況下,間隔數(shù)=植樹棵數(shù)-1,101-1=100,有100個(gè)間隔,再用間距乘間隔數(shù)即求出全長,所
12、以得5×100=500米。
3.在400米的環(huán)形跑道四周每隔5米插一面紅旗,兩面黃旗,需要多少面紅旗,多少面黃旗?
考查目的:考查運(yùn)用在封閉曲線上的植樹問題的數(shù)學(xué)模型解決問題的能力。
答案:400÷5=80(段)
紅旗:1×80=80(面)
黃旗:2×80=160(面)
答:共需要80面紅旗,160面黃旗。
解析:本題是在封閉曲線上的植樹問題,植樹棵數(shù)=間隔數(shù),先求間隔數(shù)400÷5=80。由于每個(gè)間隔插一面紅旗,所以紅旗的面數(shù)就等于間隔數(shù);而每個(gè)間隔插兩面黃旗,所以黃旗數(shù)量為2×80=160。
4.學(xué)校的苗圃長17 ,寬5 ,平均每平方米種2株杜鵑花,一共可以種
13、多少株杜鵑花?
考查目的:考查學(xué)生是否能正確區(qū)分所問問題是否屬于植樹問題。
答案:17×5=85(2)
85×2=170(株)
答:一共可以種170株杜鵑花。
解析:本題以種花為題材,看似植樹問題,實(shí)際并不屬于植樹問題,因此不能用植樹問題的思路解答。題中給出的信息是“平均每平方米種2株杜鵑花”,要求一共種多少株杜鵑花,必須先求出苗圃的面積。學(xué)生如果不認(rèn)真審題看圖,就容易受本單元所學(xué)植樹問題的干擾,出現(xiàn)先求周長然后按植樹問題數(shù)學(xué)模型解答的錯(cuò)誤。
5.學(xué)校六一慶祝會上,在一個(gè)長9 、寬3 的長方形舞臺外沿,每隔1 掛一束氣球(一束氣球有3個(gè)),靠墻的一面不掛,但四個(gè)角都要掛
14、。一共需要多少個(gè)氣球?
考查目的:考查學(xué)生綜合運(yùn)用周長和植樹問題等相關(guān)知識解決實(shí)際問題的能力。
答案:3×2+9=15()
15÷1+1=16(束)
3×16=48(個(gè))
答:一共需要48個(gè)氣球。
解析:本題既不是在一條線段上的植樹問題,也不是在封閉曲線上的植樹問題,但可以“化曲為直”,轉(zhuǎn)化為在一條線段上的植樹問題。先把掛氣球的三條邊相加求出全長,即3×2+9=15();由于四個(gè)角都要掛氣球,相當(dāng)于“兩端都要栽”的情況,植樹棵數(shù)=間隔數(shù)+1,15÷1+1=16,求出一共掛16束氣球;一束氣球有3個(gè),求一共需要多少個(gè)氣球,所以最后一步用3×16=48求得氣球的數(shù)量。
專心---專注---專業(yè)