《數(shù)學(xué)第二章 函數(shù) 2.8 函數(shù)與方程 文 新人教B版》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)第二章 函數(shù) 2.8 函數(shù)與方程 文 新人教B版(29頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2 2. .8 8函數(shù)與方程函數(shù)與方程 -2-知識(shí)梳理雙基自測231自測點(diǎn)評(píng)41.函數(shù)的零點(diǎn)(1)定義:如果函數(shù)y=f(x)在實(shí)數(shù)處的值等于,即,則叫做這個(gè)函數(shù)的零點(diǎn).(2)變號(hào)零點(diǎn):如果函數(shù)圖象通過零點(diǎn)時(shí),則稱這樣的零點(diǎn)為變號(hào)零點(diǎn).(3)幾個(gè)等價(jià)關(guān)系方程f(x)=0有實(shí)數(shù)根函數(shù)y=f(x)的圖象與有交點(diǎn)函數(shù)y=f(x)有.零 f()=0 穿過x軸 x軸 零點(diǎn) -3-知識(shí)梳理雙基自測自測點(diǎn)評(píng)23142.零點(diǎn)存在性定理如果函數(shù)y=f(x)在區(qū)間a,b上的圖象不間斷,并且在它的兩個(gè)端點(diǎn)處的函數(shù)值,即,則這個(gè)函數(shù)在這個(gè)區(qū)間上至少有一個(gè)零點(diǎn),即存在一點(diǎn)x0(a,b),使f(x0)=0.異號(hào) f(a)f
2、(b)0)的圖象與零點(diǎn)的關(guān)系 (x1,0),(x2,0) (x1,0) 2 10-5-知識(shí)梳理雙基自測自測點(diǎn)評(píng)2314.二分法對(duì)于在區(qū)間a,b上連續(xù)不斷且的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近,進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.f(a)f(b)0 一分為二 零點(diǎn) 42-6-知識(shí)梳理雙基自測3415自測點(diǎn)評(píng)1.下列結(jié)論正確的打“”,錯(cuò)誤的打“”.(1)函數(shù)f(x)=x2-1的零點(diǎn)是(-1,0)和(1,0). ()(2)二次函數(shù)y=ax2+bx+c(a0)在b2-4ac0時(shí)沒有零點(diǎn). ()(3)函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn)(函數(shù)圖象是連
3、續(xù)的),則f(a)f(b)0. ()(4)若函數(shù)f(x)在(a,b)上連續(xù)單調(diào)且f(a)f(b)0,f(2)=1-2=-10,f(1)f(2)0,即(m-6)(m+2)0,解得m6或m0,故f(x)在R上是增函數(shù),又f(-1)=e-1-30,且函數(shù)f(x)的圖象是連續(xù)的,所以f(x)的零點(diǎn)個(gè)數(shù)是1,故方程ex+3x=0有一個(gè)實(shí)數(shù)解. 答案解析關(guān)閉B-11-知識(shí)梳理雙基自測自測點(diǎn)評(píng)1.函數(shù)f(x)的零點(diǎn)是一個(gè)實(shí)數(shù),是方程f(x)=0的根,也是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo).2.“連續(xù)函數(shù)在一個(gè)區(qū)間端點(diǎn)處的函數(shù)值異號(hào)”是“這個(gè)函數(shù)在這個(gè)區(qū)間上存在零點(diǎn)”的充分條件,而不是必要條件.3.函數(shù)
4、y=f(x)在區(qū)間a,b上單調(diào),且f(a)f(b)0,若函數(shù)f(x)的圖象是連續(xù)的,則f(x)在a,b上只有一個(gè)零點(diǎn);若函數(shù)f(x)的圖象不連續(xù),則f(x)在a,b上可能沒有零點(diǎn).-12-考點(diǎn)1考點(diǎn)2考點(diǎn)3 答案 答案關(guān)閉 (1)B(2)D例1(1)(2017遼寧撫順重點(diǎn)校一模)函數(shù)f(x)=-|x|- +3的零點(diǎn)所在的區(qū)間為()A.(0,1)B.(1,2)C.(2,3)D.(3,4)(2)設(shè)定義域?yàn)?0,+)內(nèi)的單調(diào)函數(shù)f(x),對(duì)任意的x(0,+),都有ff(x)-ln x=e+1,若x0是方程f(x)-f(x)=e的一個(gè)解,則x0可能存在的區(qū)間是()A.(0,1)B.(e-1,1)C.(
5、0,e-1)D.(1,e)思考判斷函數(shù)y=f(x)在某個(gè)區(qū)間上是否存在零點(diǎn)的常用方法有哪些?-13-考點(diǎn)1考點(diǎn)2考點(diǎn)3-14-考點(diǎn)1考點(diǎn)2考點(diǎn)3解題心得判斷函數(shù)y=f(x)在某個(gè)區(qū)間上是否存在零點(diǎn),常用以下方法:(1)解方程:當(dāng)對(duì)應(yīng)方程易解時(shí),可通過解方程,觀察方程是否有根落在給定區(qū)間上.(2)利用函數(shù)零點(diǎn)的存在性定理進(jìn)行判斷:首先看函數(shù)y=f(x)在區(qū)間a,b上的圖象是否連續(xù),然后看是否有f(a)f(b)0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn).(3)通過畫函數(shù)的圖象,觀察圖象與x軸在給定區(qū)間上是否有交點(diǎn)來判斷.-15-考點(diǎn)1考點(diǎn)2考點(diǎn)3零點(diǎn)所在的區(qū)間是()A.(0,1)B.(
6、1,2)C.(2,4)D.(4,+)(2)已知函數(shù) 的一個(gè)零點(diǎn)在區(qū)間(1,2)內(nèi),則實(shí)數(shù)a的取值范圍是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)(3)函數(shù)f(x)=x2-3x-18在區(qū)間1,8上零點(diǎn).(填“存在”或“不存在”) 答案 答案關(guān)閉(1)C(2)C(3)存在-16-考點(diǎn)1考點(diǎn)2考點(diǎn)3解析: (1)因?yàn)閒(x)在(0,+)上的圖象是連續(xù)的,且f(1)=6-零點(diǎn)所在區(qū)間為(2,4).(2)由條件可知f(1)f(2)0,即(2-2-a)(4-1-a)0,即a(a-3)0,解得0a3.(3)(方法一)f(1)=12-31-18=-200,f(1)f(8)0,又f(x)=x2
7、-3x-18在區(qū)間1,8上的圖象是連續(xù)的,f(x)=x2-3x-18在區(qū)間1,8上存在零點(diǎn).-17-考點(diǎn)1考點(diǎn)2考點(diǎn)3(方法二)令f(x)=0,得x2-3x-18=0,(x-6)(x+3)=0.x=6或x=-3.x=61,8,x=-31,8,f(x)=x2-3x-18在區(qū)間1,8上存在零點(diǎn).-18-考點(diǎn)1考點(diǎn)2考點(diǎn)3例2(1)函數(shù)f(x)=2x|log0.5x|-1的零點(diǎn)個(gè)數(shù)為 ()A.1B.2C.3D.4(2)已知f(x)是定義在R上的偶函數(shù),且對(duì)于任意的x0,+),滿足f(x+2)=f(x),若當(dāng)x0,2)時(shí),f(x)=|x2-x-1|,則函數(shù)y=f(x)-1在區(qū)間-2,4上的零點(diǎn)個(gè)數(shù)為.
8、思考判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法有哪些? 答案 答案關(guān)閉 (1)B(2)7 -19-考點(diǎn)1考點(diǎn)2考點(diǎn)3-20-考點(diǎn)1考點(diǎn)2考點(diǎn)3(2)由題意作出y=f(x)在區(qū)間-2,4上的圖象,可知與直線y=1的交點(diǎn)共有7個(gè),故函數(shù)y=f(x)-1在區(qū)間-2,4上的零點(diǎn)個(gè)數(shù)為7.-21-考點(diǎn)1考點(diǎn)2考點(diǎn)3解題心得判斷函數(shù)零點(diǎn)個(gè)數(shù)的方法:(1)解方程法:若對(duì)應(yīng)方程f(x)=0可解時(shí),通過解方程,則有幾個(gè)解就有幾個(gè)零點(diǎn).(2)零點(diǎn)存在性定理法:利用定理不僅要判斷函數(shù)在區(qū)間a,b上是連續(xù)不斷的曲線,且f(a)f(b)0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對(duì)稱性)才能確定函數(shù)有多少個(gè)零點(diǎn).(3)數(shù)
9、形結(jié)合法:轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問題.先畫出兩個(gè)函數(shù)的圖象,再看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù)就是函數(shù)零點(diǎn)的個(gè)數(shù).-22-考點(diǎn)1考點(diǎn)2考點(diǎn)3對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練2(1)函數(shù)f(x)=sin(cos x)在區(qū)間0,2上的零點(diǎn)個(gè)數(shù)是()A.3B.4C.5D.6(2)(2017河北張家口4月模擬)已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x(0,+)時(shí),f(x)=2 017x+log2 017x,則f(x)在R上的零點(diǎn)的個(gè)數(shù)為. 答案解析解析關(guān)閉 答案解析關(guān)閉-23-考點(diǎn)1考點(diǎn)2考點(diǎn)3例3(2017河北武邑中學(xué)一模)已知函數(shù)若函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.思考
10、已知函數(shù)有零點(diǎn)(方程有根),求參數(shù)的取值范圍常用的方法有哪些?-24-考點(diǎn)1考點(diǎn)2考點(diǎn)3由4-2x=0,得x=2;由x2+2x-3=0,得x=-3,x=1.又函數(shù)g(x)恰有三個(gè)不同的零點(diǎn),方程g(x)=0的實(shí)根2,-3和1都在相應(yīng)范圍上,即1m2.故實(shí)數(shù)m的取值范圍是(1,2.-25-考點(diǎn)1考點(diǎn)2考點(diǎn)3-26-考點(diǎn)1考點(diǎn)2考點(diǎn)3解題心得已知函數(shù)有零點(diǎn)(方程有根),求參數(shù)的取值范圍常用的方法:(1)直接法:先根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)的取值范圍.(2)分離參數(shù)法:先將參數(shù)分離,再轉(zhuǎn)化成求函數(shù)值的域問題加以解決.(3)數(shù)形結(jié)合法:先對(duì)函數(shù)的解析式變形,在同一平面直角
11、坐標(biāo)系中畫出函數(shù)的圖象,再數(shù)形結(jié)合求解.-27-考點(diǎn)1考點(diǎn)2考點(diǎn)3對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練3(2017湖北武昌1月調(diào)研)已知函數(shù)f(x)=2ax-a+3,若x0(-1,1),f(x0)=0,則實(shí)數(shù)a的取值范圍是()A.(-,-3)(1,+) B.(-,-3)C.(-3,1)D.(1,+) 答案解析解析關(guān)閉函數(shù)f(x)=2ax-a+3,若x0(-1,1),f(x0)=0,可得(-3a+3)(a+3)0,解得a(-,-3)(1,+). 答案解析關(guān)閉A-28-考點(diǎn)1考點(diǎn)2考點(diǎn)31.函數(shù)零點(diǎn)的常用判定方法:(1)零點(diǎn)存在性定理;(2)數(shù)形結(jié)合;(3)解方程f(x)=0.2.研究方程f(x)=g(x)的解,實(shí)質(zhì)就是研究G(x)=f(x)-g(x)的零點(diǎn).3.轉(zhuǎn)化思想:方程解的個(gè)數(shù)問題可轉(zhuǎn)化為兩個(gè)函數(shù)圖象交點(diǎn)的個(gè)數(shù)問題;已知方程有解求參數(shù)的取值范圍問題可轉(zhuǎn)化為函數(shù)值域問題.-29-考點(diǎn)1考點(diǎn)2考點(diǎn)3函數(shù)零點(diǎn)存在性定理是零點(diǎn)存在的一個(gè)充分條件,而不是必要條件;判斷零點(diǎn)的個(gè)數(shù)還要根據(jù)函數(shù)的單調(diào)性、對(duì)稱性或結(jié)合函數(shù)圖象.