《江蘇省南通市高中數(shù)學 第二講 變換的復合與二階矩陣的乘法 一復合變換與二階短陣的乘法 2.1.2 二階矩陣與平面列向量的乘法課件 新人教A版選修42》由會員分享,可在線閱讀,更多相關《江蘇省南通市高中數(shù)學 第二講 變換的復合與二階矩陣的乘法 一復合變換與二階短陣的乘法 2.1.2 二階矩陣與平面列向量的乘法課件 新人教A版選修42(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 初賽 復賽 甲 80 90 乙 60 85 某電視臺舉行的歌唱比賽某電視臺舉行的歌唱比賽,甲、乙兩選甲、乙兩選手初賽、復賽成績?nèi)绫恚菏殖踬?、復賽成績?nèi)绫恚?規(guī)定比賽的最后成績由初賽和復賽綜規(guī)定比賽的最后成績由初賽和復賽綜合裁定合裁定,其中初賽占其中初賽占40%,復賽占復賽占60%,則甲,則甲和乙的綜合成績分別是多少和乙的綜合成績分別是多少?80 0.490 0.686;甲甲: 0.40.6乙乙:608575.:608575.0.480 90 ,0.6記記,AC 0.480 900.686 .記記 80 0.4+90 0.680 0.4+90 0.6A C.請請你你類類比比甲甲的的計計算算方方
2、法法,計計算算乙乙的的成成績績80 900.4,0.6記記,60 8560 85C80 900.480 0.490 0.60.660 0.485 0.686.75則則甲甲、乙乙兩兩人人的的成成績績可可計計算算如如下下:60 8560 85C111112211111121111122121,規(guī)規(guī)定定:行行矩矩陣陣與與列列矩矩陣陣的的乘乘法法法法則則為為baabbaaababb01112212200110120111221220210220.xaabbyxaxayaabbybxby 二二階階矩矩陣陣與與列列向向量量的的乘乘法法規(guī)規(guī)則則為為31.12.xy 計計算算:1 21 2 1;12.xy 3
3、112.xxyy 1 211 21左左乘乘矩矩陣陣后后變變成成一一個個新新的的向向量量; 左左乘乘矩矩陣陣后后變變成成一一個個新新的的向向量量 1 2(3, 1)(1,1)( , )2.x yxy也也就就是是平平面面上上的的點點左左乘乘矩矩陣陣后后變變成成一一個個新新的的點點; 平平面面上上的的點點左左乘乘矩矩陣陣 后后變變成成一一個個新新的的點點( , ),(,),( , ),).一一般般地地,對對于于平平面面上上的的任任意意一一點點(向向量量)若若按按照照對對應應法法則則 ,總總能能對對應應唯唯一一的的一一個個平平面面點點向向量量)(則則稱稱 為為一一個個變變換換,簡簡記記為為:(,或或:
4、x yTx yTT x yx yxxTyy 就就確確定定了了一一個個變變換換:( , )( ,)(2 , )T x yx yx y:2.或或:xxxTyyy , , ,).一一般般地地,對對于于平平面面向向量量的的變變換換 ,如如果果變變換換規(guī)規(guī)則則為為:那那么么,根根據(jù)據(jù)二二階階矩矩陣陣與與向向量量的的乘乘法法規(guī)規(guī)則則可可以以改改寫寫為為 :的的矩矩陣陣形形式式,反反之之亦亦然然(TxxaxbyTyycxdyxxa bxTyycdya b c dR 坐坐標標變變換換的的形形式式矩矩陣陣乘乘法法的的形形式式兩兩種種形形式式形形異異而而質(zhì)質(zhì)同同.由由矩矩陣陣確確定定的的變變換換 ,通通常常記記為
5、為根根據(jù)據(jù)變變換換的的定定義義,它它是是平平面面內(nèi)內(nèi)的的點點集集到到其其自自身身的的一一個個映映射射. .MMTT .當當表表示示某某個個平平面面圖圖形形 上上的的任任意意點點時時,這這些些點點就就組組成成了了圖圖形形 ,它它在在的的作作用用下下,將將得得到到一一個個新新的的圖圖形形原原象象集集 的的象象集集MxFyFTFF 解決教材上的思考題解決教材上的思考題P.81 43 2xxxyyy 例例題題1 1(1 1)已已知知變變換換,試試將將它它寫寫成成坐坐標標變變換換的的形形式式;3(2 2)已已知知變變換換,試試將將它它寫寫成成矩矩陣陣乘乘法法的的形形式式. .xxxyyyy 課堂精練課堂精練小結小結:(1)二階矩陣與平面向量的乘法規(guī)則二階矩陣與平面向量的乘法規(guī)則;(2)理解矩陣對應著向量集合到向量集理解矩陣對應著向量集合到向量集合的映射合的映射;(3)待定系數(shù)法是由原象和象確定矩陣待定系數(shù)法是由原象和象確定矩陣的常用方法的常用方法.