《湖南省師大附中高考數(shù)學(xué) 12.3 離散型隨機(jī)變量及其分布列(2課時(shí))復(fù)習(xí)課件 理》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《湖南省師大附中高考數(shù)學(xué) 12.3 離散型隨機(jī)變量及其分布列(2課時(shí))復(fù)習(xí)課件 理(18頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、12.3 12.3 離散型隨機(jī)變量及其分布列離散型隨機(jī)變量及其分布列知識(shí)梳理知識(shí)梳理t57301p21.1.隨機(jī)試驗(yàn)的特征:隨機(jī)試驗(yàn)的特征:(1)(1)實(shí)驗(yàn)可以在相同條件下重復(fù)進(jìn)行;實(shí)驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)(2)試驗(yàn)的所有可能結(jié)果是明確可知的,試驗(yàn)的所有可能結(jié)果是明確可知的,且不止一個(gè);且不止一個(gè);(3)(3)每次試驗(yàn)總是恰好出現(xiàn)這些結(jié)果中的每次試驗(yàn)總是恰好出現(xiàn)這些結(jié)果中的一個(gè),但在一次試驗(yàn)之前不能肯定這次一個(gè),但在一次試驗(yàn)之前不能肯定這次試驗(yàn)會(huì)出現(xiàn)哪種結(jié)果試驗(yàn)會(huì)出現(xiàn)哪種結(jié)果. .2.2.隨機(jī)變量:隨機(jī)變量:表示隨機(jī)試驗(yàn)不同結(jié)果的數(shù)字變量,常表示隨機(jī)試驗(yàn)不同結(jié)果的數(shù)字變量,常用字母
2、用字母X X,Y Y,等表示等表示. .3.3.離散型隨機(jī)變量:離散型隨機(jī)變量:所有取值可以一一列出的隨機(jī)變量所有取值可以一一列出的隨機(jī)變量. .4.4.離散型隨機(jī)變量的分布列:離散型隨機(jī)變量的分布列:若離散型隨機(jī)變量若離散型隨機(jī)變量X X的所有可能取值為的所有可能取值為x1 1,x2 2,xi i,xn,X X取每一個(gè)值取每一個(gè)值xi i(i(i1 1,2 2,n) )的概率的概率P(XP(Xxi i) )p pi i,則下列表格稱(chēng)為則下列表格稱(chēng)為X X的分布列的分布列. .pnpip2p1Pxnxix2x1X X5.5.分布列的表示與性質(zhì):分布列的表示與性質(zhì):表示方法:表示方法:解析法,列
3、表法,圖象法解析法,列表法,圖象法. .基本性質(zhì):基本性質(zhì): (1 1)p pi i00,i i1 1,2 2,n; (2 2)p p1 1p p2 2p pn1.1.6.6.兩點(diǎn)分布:兩點(diǎn)分布:隨機(jī)試驗(yàn)只有兩個(gè)可隨機(jī)試驗(yàn)只有兩個(gè)可能結(jié)果,其分布列為能結(jié)果,其分布列為p1 1pP P1 10 0X X7.7.超幾何分布:超幾何分布: 設(shè)設(shè)N N件產(chǎn)品中有件產(chǎn)品中有M M件次品,從中任取件次品,從中任取n件產(chǎn)品所含的次品數(shù)為件產(chǎn)品所含的次品數(shù)為X X,其中,其中M M ,N N,nNN*,MNMN,nNNM M,則隨機(jī)變量,則隨機(jī)變量X X的分布列為的分布列為k0 0,1 1,2 2,m,mmi
4、nMM,n.()knkMNMnNCCP XkC-=拓展延伸拓展延伸 1.1.隨機(jī)變量與隨機(jī)試驗(yàn)結(jié)果之間的對(duì)隨機(jī)變量與隨機(jī)試驗(yàn)結(jié)果之間的對(duì)應(yīng)關(guān)系類(lèi)似于函數(shù),其定義域是試驗(yàn)的應(yīng)關(guān)系類(lèi)似于函數(shù),其定義域是試驗(yàn)的所有可能結(jié)果組成的集合,值域是隨機(jī)所有可能結(jié)果組成的集合,值域是隨機(jī)變量的所有取值組成的集合變量的所有取值組成的集合. .對(duì)不具有數(shù)對(duì)不具有數(shù)量性質(zhì)的隨機(jī)試驗(yàn),可以通過(guò)適當(dāng)設(shè)定,量性質(zhì)的隨機(jī)試驗(yàn),可以通過(guò)適當(dāng)設(shè)定,使隨機(jī)變量使隨機(jī)變量數(shù)量化數(shù)量化. . 2.2.離散型隨機(jī)變量的所有可能取值,離散型隨機(jī)變量的所有可能取值,可以是有限個(gè),也可以是無(wú)限個(gè),且能可以是有限個(gè),也可以是無(wú)限個(gè),且能按一定
5、次序一一列出按一定次序一一列出. .在某個(gè)區(qū)間內(nèi)任意在某個(gè)區(qū)間內(nèi)任意取值的隨機(jī)變量,稱(chēng)為取值的隨機(jī)變量,稱(chēng)為連續(xù)型連續(xù)型隨機(jī)變量,隨機(jī)變量,不要求掌握不要求掌握. . 3.3.隨機(jī)變量的分布列一般用隨機(jī)變量的分布列一般用列表法列表法表表示,在制作表格之前必須先計(jì)算隨機(jī)變示,在制作表格之前必須先計(jì)算隨機(jī)變量各個(gè)取值的概率量各個(gè)取值的概率. .如果如果n n比較大時(shí),可比較大時(shí),可考慮用考慮用解析法解析法表示表示. . 4.4.利用分布列和概率的性質(zhì),可以計(jì)利用分布列和概率的性質(zhì),可以計(jì)算能由隨機(jī)變量表示的事件的概率算能由隨機(jī)變量表示的事件的概率. .一般一般地,隨機(jī)變量地,隨機(jī)變量X X在某個(gè)范
6、圍內(nèi)取值的概率,在某個(gè)范圍內(nèi)取值的概率,等于它取這個(gè)范圍內(nèi)各個(gè)值的等于它取這個(gè)范圍內(nèi)各個(gè)值的概率之和概率之和. . 5.5.兩點(diǎn)分布又稱(chēng)兩點(diǎn)分布又稱(chēng)0 01 1分布,或伯努利分布,或伯努利分布分布. .在兩點(diǎn)分布中,在兩點(diǎn)分布中,X X1 1對(duì)應(yīng)的試驗(yàn)結(jié)對(duì)應(yīng)的試驗(yàn)結(jié)果為果為“成功成功”,P(XP(X1)1)稱(chēng)為稱(chēng)為成功概率成功概率. . 6.6.兩點(diǎn)分布中隨機(jī)變量只有兩點(diǎn)分布中隨機(jī)變量只有0 0和和1 1兩個(gè)兩個(gè)取值,但只有兩個(gè)取值的隨機(jī)變量不一取值,但只有兩個(gè)取值的隨機(jī)變量不一定服從兩點(diǎn)分布定服從兩點(diǎn)分布. .對(duì)只有兩個(gè)取值且不服對(duì)只有兩個(gè)取值且不服從兩點(diǎn)分布的隨機(jī)變量,可以通過(guò)適當(dāng)從兩點(diǎn)分
7、布的隨機(jī)變量,可以通過(guò)適當(dāng)?shù)淖儞Q轉(zhuǎn)化為兩點(diǎn)分布的變換轉(zhuǎn)化為兩點(diǎn)分布. .在有多個(gè)結(jié)果的在有多個(gè)結(jié)果的隨機(jī)試驗(yàn)中,如果只關(guān)心一個(gè)隨機(jī)事件隨機(jī)試驗(yàn)中,如果只關(guān)心一個(gè)隨機(jī)事件是否發(fā)生,可以將它化歸為兩點(diǎn)分布來(lái)是否發(fā)生,可以將它化歸為兩點(diǎn)分布來(lái)研究研究. .考點(diǎn)分析考點(diǎn)分析考點(diǎn)考點(diǎn)1 1 求隨機(jī)變量的分布列求隨機(jī)變量的分布列 例例1 1 設(shè)離散型隨機(jī)變量設(shè)離散型隨機(jī)變量X X的分布列為的分布列為分別求隨機(jī)變量分別求隨機(jī)變量2X2X1 1和和|X|X1|1|的分布列的分布列. .0.30.30.30.30.10.10.10.10.20.2P P4 43 32 21 10 0X X 例例2 2 一袋中裝有
8、編號(hào)為一袋中裝有編號(hào)為1 1,2 2,3 3,4 4,5 5的五個(gè)球,從袋中任意取出的五個(gè)球,從袋中任意取出3 3個(gè)球,用個(gè)球,用表示取出的三個(gè)球中的最小號(hào)碼,求隨表示取出的三個(gè)球中的最小號(hào)碼,求隨機(jī)變量機(jī)變量的分布列的分布列. . 例例3 3 某批產(chǎn)品成箱包裝,每箱某批產(chǎn)品成箱包裝,每箱5 5件件. .某某用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先取出用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先取出3 3箱,再?gòu)南?,再?gòu)拿肯渲腥我獬槿∶肯渲腥我獬槿? 2件產(chǎn)品進(jìn)行檢驗(yàn)件產(chǎn)品進(jìn)行檢驗(yàn). .設(shè)取設(shè)取出的第一、二、三箱中分別有出的第一、二、三箱中分別有0 0件、件、1 1件、件、2 2件二等品,其余都為一等品件二等品,其余都為一等品. .
9、用用表示表示抽檢的抽檢的6 6件產(chǎn)品中二等品的件數(shù),求隨機(jī)件產(chǎn)品中二等品的件數(shù),求隨機(jī)變量變量的分布列的分布列. . 例例4 4 某鄉(xiāng)鎮(zhèn)有某鄉(xiāng)鎮(zhèn)有1515個(gè)村莊,其中有個(gè)村莊,其中有7 7個(gè)個(gè)村莊交通不便,現(xiàn)從中任選村莊交通不便,現(xiàn)從中任選1010個(gè)村莊,個(gè)村莊,求交通不便的村莊數(shù)求交通不便的村莊數(shù)的分布列的分布列. .【解題要點(diǎn)解題要點(diǎn)】確定隨機(jī)變量的可能取值確定隨機(jī)變量的可能取值求隨機(jī)變量求隨機(jī)變量取各個(gè)值的概率取各個(gè)值的概率列表寫(xiě)出分布列列表寫(xiě)出分布列.考點(diǎn)考點(diǎn)2 2 由分布列求隨機(jī)事件的概率由分布列求隨機(jī)事件的概率 例例5 5 已知隨機(jī)變量已知隨機(jī)變量的分布列為的分布列為 (k(k0
10、0,1 1,2 2,3)3),求,求 的值的值. .()1cPkk(1)P 例例6 6 已知隨機(jī)變量已知隨機(jī)變量服從兩點(diǎn)分布,服從兩點(diǎn)分布,其分布列如下,求其分布列如下,求的成功概率的成功概率. .3 38c8c9c9c2 2c cP P1 10 0 例例7 7 某商場(chǎng)為了促銷(xiāo),在一個(gè)口袋里某商場(chǎng)為了促銷(xiāo),在一個(gè)口袋里裝有大小相同的裝有大小相同的1010個(gè)紅球和個(gè)紅球和2020個(gè)白球,個(gè)白球,顧客從中一次摸出顧客從中一次摸出5 5個(gè)球,擬設(shè)定一個(gè)中個(gè)球,擬設(shè)定一個(gè)中獎(jiǎng)規(guī)則獎(jiǎng)規(guī)則. .(1 1)求至少摸到)求至少摸到3 3個(gè)紅球的概率;個(gè)紅球的概率;(2 2)若中獎(jiǎng)概率控制在)若中獎(jiǎng)概率控制在5
11、5%55%左右,應(yīng)如左右,應(yīng)如何設(shè)定中獎(jiǎng)規(guī)則?何設(shè)定中獎(jiǎng)規(guī)則? 例例8 8 某城市有甲、乙、丙某城市有甲、乙、丙3 3個(gè)旅游景點(diǎn),個(gè)旅游景點(diǎn),一位游客游覽這一位游客游覽這3 3個(gè)景點(diǎn)的概率分別是個(gè)景點(diǎn)的概率分別是0.40.4,0.50.5,0.60.6,且游客是否游覽哪個(gè)景點(diǎn)互不影,且游客是否游覽哪個(gè)景點(diǎn)互不影響,用響,用表示該游客離開(kāi)該城市時(shí)游覽的景表示該游客離開(kāi)該城市時(shí)游覽的景點(diǎn)數(shù)與沒(méi)有游覽的景點(diǎn)數(shù)之差的絕對(duì)值點(diǎn)數(shù)與沒(méi)有游覽的景點(diǎn)數(shù)之差的絕對(duì)值. .(1 1)求)求的分布列;的分布列;(2 2)記)記“f(x(x) )2x2x4 4在區(qū)間在區(qū)間 3 3,11內(nèi)有零點(diǎn)內(nèi)有零點(diǎn)”為事件為事件A A,求事件,求事件A A發(fā)生的概率;發(fā)生的概率;(3 3)記)記“g g(x(x) )x x2 23x3x1 1在區(qū)間在區(qū)間22, ) )上單調(diào)遞增上單調(diào)遞增”為事件為事件B B,求事件,求事件B B發(fā)生的發(fā)生的概率概率. .【解題要點(diǎn)解題要點(diǎn)】由分布列性質(zhì)求參數(shù)值由分布列性質(zhì)求參數(shù)值超幾何分布用超幾何分布用解析法表示解析法表示由分布列寫(xiě)出相關(guān)事件的由分布列寫(xiě)出相關(guān)事件的概率概率. .