8、1.已知a,b,c∈R,則下列命題正確的是( )
A.a>b?ac2>bc2 B .>?a>b
C.?> D.?>
解析:當c=0時,ac2=0,bc2=0,故由a>b不能得到ac2>bc2,故A錯誤;當c<0時,>?a0?或故選項D錯誤,C正確.故選C.
答案:C
2.已知a,b,c∈R,函數f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則( )
A.a>0,4a+b=0 B.a<0,4a+b=0
C.a>0,2a+b=0 D.a<0,2a+b=0
解析:∵f(0)=f(4)>f(1),
∴c=16a+4b+c>a+b+
9、c,
∴16a+4b=0,即4a+b=0,
且15a+3b>0,即5a+b>0,
而5a+b=a+4a+b,∴a>0.故選A.
答案:A
3.在R上定義運算:=ad-bc,若不等式 ≥1對任意實數x恒成立,則實數a的最大值為( )
A.- B.-
C. D.
解析:由定義知,不等式 ≥1等價于x2-x-(a2-a-2)≥1,∴x2-x+1≥a2-a對任意實數x恒成立.∵x2-x+1=2+≥,∴a2-a≤,解得-≤a≤,則實數a的最大值為.
答案:D
4.“(m-1)(a-1)>0”是“l(fā)ogam>0”的一個( )
A.充分不必要條件 B.必要不充分條件
C.
10、充要條件 D.既不充分也不必要條件
解析:當(m-1)(a-1)>0時,有或當m<0,a<0時,logam無意義,故logam>0不一定成立;當logam>0時,則或
則(m-1)(a-1)>0恒成立,故“(m-1)(a-1)>0”是“l(fā)ogam>0”的必要不充分條件.故選B.
答案:B
5.若0
C.ab>ba D.logba>logab
解析:對于A,函數y=在(0,+∞)上單調遞減,所以當0恒成立;對于C,當0<
11、a<1時,函數y=ax單調遞減,所以ab>aa,函數y=xa單調遞增,所以aa>ba,所以ab>aa>ba恒成立.所以選D.
答案:D
6.若a|b| B.>
C.> D.a2>b2
解析:由不等式的性質可得|a|>|b|,a2>b2,>成立.假設>成立,由a0,
由>?a(a-b)>a(a-b)?a>a-b?b>0,與已知矛盾,故選B.
答案:B
7.已知f(x)是定義在(-∞,+∞)上的偶函數,且在(-∞,0]上是增函數.設a=f(log47),b=,c=f(21.6),則a
12、, b,c的大小關系是( )
A.clog47,21.6>2,∴l(xiāng)og47f(log49)>f(21.6),即c
13、實數t的取值范圍為( )
A.[-2,6] B.[-3,5]
C.[2,6] D.[3,5]
解析:當MA,MB與圓相切時,|CM|==,由題意,圓C上存在兩點使MA⊥MB,則|CM|=≤?2≤t≤6,故選C.
答案:C
9.函數f(x)=則f(x)≥1的解集為( )
A.
B.
C.(-∞,1)∪
D.(-∞,1]∪
解析:不等式f(x)≥1等價于或解之得x≤1或≤x≤3,所以不等式的解集為(-∞,1]∪,故選D.
答案:D
10.若不等式組的解集不是空集,則實數a的取值范圍是
( )
A.(-∞,-4] B.[-4,+∞)
C.[-4,3] D.
14、[-4,3)
解析:不等式x2-2x-3≤0的解集為[-1,3],假設的解集為空集,則不等式x2+4x-(a+1)≤0的解集為集合{x|x<-1或x>3}的子集,
因為函數f(x)=x2+4x-(a+1)的圖像的對稱軸方程為x=-2,所以必有f(-1)=-4-a>0,即a<-4,則使的解集不為空集的a的取值范圍是a≥-4.
答案:B
11.設0≤α≤π,不等式8x2-(8sin α)x+cos 2α≥0對x∈R恒成立,則α的取值范圍為 .
解析:由8x2-(8sin α)x+cos 2α≥0對x∈R恒成立,
得Δ=(-8sin α)2-48cos 2α≤0,
即64sin2α-32(1-2sin2α)≤0,
得到sin2α≤,
∵0≤α≤π,∴0≤sin α≤,
∴0≤α≤或≤α≤π,
即α的取值范圍為∪.
答案:∪
12.若關于x的二次不等式x2+mx+1≥0的解集為R,則實數m的取值范圍.
解析:不等式x2+mx+1≥0的解集為R,相當于二次函數y=x2+mx+1的最小值非負,即方程x2+mx+1=0最多有一個實根,故Δ=m2-4≤0,解得-2≤m≤2.