高三人教版數(shù)學 理一輪復習課時作業(yè) 第二章 函數(shù)、導數(shù)及其應用 第十一節(jié)

上傳人:仙*** 文檔編號:42612889 上傳時間:2021-11-27 格式:DOC 頁數(shù):6 大?。?27.50KB
收藏 版權申訴 舉報 下載
高三人教版數(shù)學 理一輪復習課時作業(yè) 第二章 函數(shù)、導數(shù)及其應用 第十一節(jié)_第1頁
第1頁 / 共6頁
高三人教版數(shù)學 理一輪復習課時作業(yè) 第二章 函數(shù)、導數(shù)及其應用 第十一節(jié)_第2頁
第2頁 / 共6頁
高三人教版數(shù)學 理一輪復習課時作業(yè) 第二章 函數(shù)、導數(shù)及其應用 第十一節(jié)_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三人教版數(shù)學 理一輪復習課時作業(yè) 第二章 函數(shù)、導數(shù)及其應用 第十一節(jié)》由會員分享,可在線閱讀,更多相關《高三人教版數(shù)學 理一輪復習課時作業(yè) 第二章 函數(shù)、導數(shù)及其應用 第十一節(jié)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、課時作業(yè)一、選擇題1函數(shù) f(x)(x2a)(xa)2的導數(shù)為()A2(x2a2)B2(x2a2)C3(x2a2)D3(x2a2)Cf(x)(xa)2(x2a)2(xa)3(x2a2)2已知物體的運動方程為 st23t(t 是時間,s 是位移),則物體在時刻 t2 時的速度為()A.194B.174C.154D.134Ds2t3t2,s|t2434134.3(20 xx??谀M)曲線 ye2x在點(0,1)處的切線方程為()Ay12x1By2x1Cy2x1Dy2x1Dy(e2x)2e2x,ky|x02e202,切線方程為 y12(x0),即 y2x1.4設曲線 y1cos xsin x在點2,

2、1處的切線與直線 xay10 平行,則實數(shù) a等于()A1B.12C2D2Aysin2x(1cos x)cos xsin2x1cos xsin2x,1.由條件知1a1,a1.5若點 P 是曲線 yx2lnx 上任意一點,則點 P 到直線 yx2 的最小距離為()A1B. 2C.22D. 3B設 P(x0,y0)到直線 yx2 的距離最小,得 x01 或 x012(舍)P 點坐標(1,1)P 到直線 yx2 距離為 d|112|11 2.6(20 xx衡陽模擬)已知函數(shù) f(x)ex,則當 x1x2時,下列結論正確的是()Aex1f(x1)f(x2)x1x2Bex1f(x1)f(x2)x1x2C

3、ex2f(x1)f(x2)x1x2Dex2f(x1)f(x2)x1x2C設 A(x1,f(x1),B(x2,f(x2),則 ex2表示曲線 f(x)ex在 B 點處的切線的斜率,而f(x1)f(x2)x1x2表示直線 AB 的斜率,由數(shù)形結合可知:ex2f(x1)f(x2)x1x2,故選 C.二、填空題7(20 xx鄭州模擬)已知函數(shù) f(x)ln xf(1)x23x4,則 f(1)_解析f(x)1x2f(1)x3,f(1)12f(1)3,f(1)2,f(1)1438.答案88(理)(20 xx廣東高考)若曲線 ykxln x 在點(1,k)處的切線平行于 x 軸,則 k_解析yk1x.因為曲

4、線在點(1,k)處的切線平行于 x 軸,所以切線斜率為零,由導數(shù)的幾何意義得 y|x10,故 k10,即 k1.答案18(文)(20 xx廣東高考)若曲線 yax2ln x 在(1,a)處的切線平行于 x 軸,則a_解析由曲線在點(1,a)處的切線平行于 x 軸得切線的斜率為 0,由 y2ax1x及導數(shù)的幾何意義得 y|x12a10,解得 a12.答案129(20 xx太原四校聯(lián)考)已知 M 是曲線 yln x12x2(1a)x 上的一點,若曲線在M處的切線的傾斜角是均不小于4的銳角, 則實數(shù)a的取值范圍是_解析依題意得 y1xx(1a),其中 x0.由曲線在 M 處的切線的傾斜角是均不小于4

5、的銳角得,對于任意正數(shù) x,均有1xx(1a)1,即 a1xx.當 x0 時,1xx21xx2,當且僅當1xx,即 x1 時取等號,因此實數(shù) a 的取值范圍是(,2答案(,2三、解答題10 設函數(shù) f(x)x3ax29x1,當曲線 yf(x)斜率最小的切線與直線 12xy6平行時,求 a 的值解析f(x)3x22ax93xa329a23,即當 xa3時,函數(shù) f(x)取得最小值9a23,因斜率最小的切線與 12xy6 平行,即該切線的斜率為12,所以9a2312,即 a29,即 a3.11設函數(shù) f(x)axbx,曲線 yf(x)在點(2,f(2)處的切線方程為7x4y120.(1)求 f(x

6、)的解析式;(2)證明:曲線 yf(x)上任一點處的切線與直線 x0 和直線 yx 所圍成的三角形面積為定值,并求此定值解析(1)方程 7x4y120 可化為 y74x3,當 x2 時,y12.又 f(x)abx2,則2ab212,ab474,解得a1,b3.故 f(x)x3x.(2)證明:設 P(x0,y0)為曲線上任一點,由 y13x2知曲線在點 P(x0,y0)處的切線方程為 yy013x20(xx0),即 yx03x013x20(xx0)令 x0 得 y6x0,從而得切線與直線 x0 的交點坐標為0,6x0.令 yx 得 yx2x0,從而得切線與直線 yx 的交點坐標為(2x0,2x0

7、)所以點P(x0, y0)處的切線與直線x0, yx所圍成的三角形面積為12|6x0|2x0|6.故曲線 yf(x)上任一點處的切線與直線 x0, yx 所圍成的三角形的面積為定值,此定值為 6.12(20 xx九江模擬)已知 aR,函數(shù) f(x)axln x1,g(x)(ln x1)exx(其中e 為自然對數(shù)的底數(shù))(1)判斷函數(shù) f(x)在(0,e上的單調(diào)性;(2)是否存在實數(shù)x0(0, ), 使曲線 yg(x)在點xx0處的切線與y 軸垂直?若存在,求出 x0的值,若不存在,請說明理由解析(1)f(x)axln x1,x(0,),f(x)ax21xxax2.若 a0,則 f(x)0,f(

8、x)在(0,e上單調(diào)遞增;若 0ae,當 x(0,a)時,f(x)0,函數(shù) f(x)在區(qū)間(a,e上單調(diào)遞增;若 ae,則 f(x)0,函數(shù) f(x)在區(qū)間(0,e上單調(diào)遞減(2)g(x)(ln x1)exx,x(0,),g(x)(ln x1)ex(ln x1)(ex)1exx(ln x1)ex11xln x1ex1,由(1)易知,當 a1 時,f(x)1xln x1 在(0,)上的最小值f(x)minf(1)0,即 x0(0,)時,1x0ln x010.又 ex00,g(x0)1x0ln x01ex0110.曲線 yg(x)在點 xx0處的切線與 y 軸垂直等價于方程 g(x0)0 有實數(shù)解而 g(x0)0,即方程 g(x0)0 無實數(shù)解故不存在

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!