高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 熱點(diǎn)探究課1 導(dǎo)數(shù)應(yīng)用中的高考熱點(diǎn)問題學(xué)案 文 北師大版
《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 熱點(diǎn)探究課1 導(dǎo)數(shù)應(yīng)用中的高考熱點(diǎn)問題學(xué)案 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 熱點(diǎn)探究課1 導(dǎo)數(shù)應(yīng)用中的高考熱點(diǎn)問題學(xué)案 文 北師大版(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 熱點(diǎn)探究課(一) 導(dǎo)數(shù)應(yīng)用中的高考熱點(diǎn)問題 (對應(yīng)學(xué)生用書第36頁) [命題解讀] 函數(shù)是中學(xué)數(shù)學(xué)的核心內(nèi)容,導(dǎo)數(shù)是研究函數(shù)的重要工具,因此,導(dǎo)數(shù)的應(yīng)用是歷年高考的重點(diǎn)與熱點(diǎn),常涉及的問題有:討論函數(shù)的單調(diào)性(求函數(shù)的單調(diào)區(qū)間)、求極值、求最值、求切線方程、求函數(shù)的零點(diǎn)或方程的根、求參數(shù)的范圍、證明不等式等,涉及的數(shù)學(xué)思想有:函數(shù)與方程、分類討論、數(shù)形結(jié)合、轉(zhuǎn)化與化歸思想等,中、高檔難度均有. 熱點(diǎn)1 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值(答題模板) 函數(shù)的單調(diào)性、極值是局部概念,函數(shù)的最值是整體概念,研究函數(shù)的性質(zhì)必須在定義域內(nèi)進(jìn)行,因此,務(wù)必遵循定義域優(yōu)先的原則,本熱點(diǎn)主
2、要有三種考查方式:(1)討論函數(shù)的單調(diào)性或求單調(diào)區(qū)間;(2)求函數(shù)的極值或最值;(3)利用函數(shù)的單調(diào)性、極值、最值,求參數(shù)的范圍. (本小題滿分12分)(20xx全國卷Ⅱ)已知函數(shù)f(x)=ln x+a(1-x). (1)討論f(x)的單調(diào)性; (2)當(dāng)f(x)有最大值,且最大值大于2a-2時,求a的取值范圍. [思路點(diǎn)撥] (1)求出導(dǎo)數(shù)后對a分類討論,然后判斷單調(diào)性;(2)運(yùn)用(1)的結(jié)論分析函數(shù)的最大值,對得到的不等式進(jìn)行等價轉(zhuǎn)化,通過構(gòu)造函數(shù)并分析該函數(shù)的單調(diào)性求a的范圍. [規(guī)范解答] (1)f(x)的定義域?yàn)?0,+∞),f′(x)=-A. 2分 若a≤0,
3、則f′(x)>0,所以f(x)在(0,+∞)上是增加的. 3分 若a>0,則當(dāng)x∈時,f′(x)>0; 當(dāng)x∈時,f′(x)<0. 5分 所以f(x)在上是增加的,在上是減少的. 6分 (2)由(1)知,當(dāng)a≤0時,f(x)在(0,+∞)上無最大值; 7分 當(dāng)a>0時,f(x)在x=取得最大值,最大值為 f=ln+a=-ln a+a-1. 9分 因此f>2a-2等價于ln a+a-1<0. 10分 令g(a)=ln a+a-1,則g(a)在(0,+∞)上是增加的,g(1)=0. 于是,當(dāng)01時,g(a)>0. 因此,
4、a的取值范圍是(0,1). 12分 [答題模板] 討論含參函數(shù)f(x)的單調(diào)性的一般步驟 第一步:求函數(shù)f(x)的定義域(根據(jù)已知函數(shù)解析式確定). 第二步:求函數(shù)f(x)的導(dǎo)數(shù)f′(x). 第三步:根據(jù)f′(x)=0的零點(diǎn)是否存在或零點(diǎn)的大小對參數(shù)分類討論. 第四步:求解(令f′(x)>0或令f′(x)<0). 第五步:下結(jié)論. 第六步:反思回顧,查看關(guān)鍵點(diǎn)、易錯點(diǎn)、注意解題規(guī)范. 溫馨提示:1.討論函數(shù)的單調(diào)性,求函數(shù)的單調(diào)區(qū)間、極值問題,最終歸結(jié)到判斷f′(x)的符號問題上,而f′(x)>0或f′(x)<0,最終可轉(zhuǎn)化為一個一元一次不等式或一元二次不等式
5、問題. 2.若已知f(x)的單調(diào)性,則轉(zhuǎn)化為不等式f′(x)≥0或f′(x)≤0在單調(diào)區(qū)間上恒成立問題求解. [對點(diǎn)訓(xùn)練1] 已知函數(shù)f(x)=x3+ax2-x+c,且a=f′. (1)求a的值; (2)求函數(shù)f(x)的單調(diào)區(qū)間; (3)設(shè)函數(shù)g(x)=(f(x)-x3)ex,若函數(shù)g(x)在x∈[-3,2]上單調(diào)遞增,求實(shí)數(shù)c的取值范圍. 【導(dǎo)學(xué)號:00090072】 [解] (1)由f(x)=x3+ax2-x+c, 得f′(x)=3x2+2ax-1. 當(dāng)x=時,得a=f′=32+2a-1, 解得a=-1. (2)由(1)可知f
6、(x)=x3-x2-x+c, 則f′(x)=3x2-2x-1=3(x-1),列表如下: x - 1 (1, +∞) f′(x) + 0 - 0 + f(x) 極大值 極小值 所以f(x)的單調(diào)遞增區(qū)間是和(1,+∞); f(x)的單調(diào)遞減區(qū)間是. (3)函數(shù)g(x)=(f(x)-x3)ex=(-x2-x+c)ex, 有g(shù)′(x)=(-2x-1)ex+(-x2-x+c)ex =(-x2-3x+c-1)ex, 因?yàn)楹瘮?shù)g(x)在x∈[-3,2]上是增加的, 所以h(x)=-x2-3x+c-1≥0在x∈[-3,2]
7、上恒成立, 只要h(2)≥0,解得c≥11, 所以c的取值范圍是[11,+∞). 熱點(diǎn)2 利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)或曲線交點(diǎn)問題 研究函數(shù)零點(diǎn)的本質(zhì)就是研究函數(shù)的極值的正負(fù),為此,我們可以通過討論函數(shù)的單調(diào)性來解決,求解時應(yīng)注重等價轉(zhuǎn)化與數(shù)形結(jié)合思想的應(yīng)用,其主要考查方式有:(1)確定函數(shù)的零點(diǎn)、圖像交點(diǎn)的個數(shù);(2)由函數(shù)的零點(diǎn)、圖像交點(diǎn)的情況求參數(shù)的取值范圍. (20xx北京高考節(jié)選)設(shè)函數(shù)f(x)=x3+ax2+bx+C. (1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程; (2)設(shè)a=b=4,若函數(shù)f(x)有三個不同零點(diǎn),求c的取值范圍. [解] (1
8、)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+B. 因?yàn)閒(0)=c,f′(0)=b, 所以曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=bx+C. (2)當(dāng)a=b=4時,f(x)=x3+4x2+4x+c, 所以f′(x)=3x2+8x+4. 令f′(x)=0,得3x2+8x+4=0,解得x=-2或x=-. f(x)與f′(x)在區(qū)間(-∞,+∞)上的情況如下: x (-∞,-2) -2 - f′(x) + 0 - 0 + f(x) c c- 所以,當(dāng)c>0且c-<0時,存在x1∈(-
9、4,-2),x2∈,x3∈,使得f(x1)=f(x2)=f(x3)=0. 由f(x)的單調(diào)性知,當(dāng)且僅當(dāng)c∈時,函數(shù)f(x)=x3+4x2+4x+c有三個不同零點(diǎn). [規(guī)律方法] 用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),常用兩種方法:一是用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,借助零點(diǎn)存在性定理判斷;二是將零點(diǎn)問題轉(zhuǎn)化為函數(shù)圖像的交點(diǎn)問題,利用數(shù)形結(jié)合來解決. [對點(diǎn)訓(xùn)練2] 設(shè)函數(shù)f(x)=ln x+,m∈R. (1)當(dāng)m=e(e為自然對數(shù)的底數(shù))時,求f(x)的極小值; (2)討論函數(shù)g(x)=f′(x)-零點(diǎn)的個數(shù). [解] (1)由題設(shè),當(dāng)m=e時,f(x)=ln x+, 則f′(x)=,由f
10、′(x)=0,得x=e. ∴當(dāng)x∈(0,e),f′(x)<0,f(x)在(0,e)上單調(diào)遞減; 當(dāng)x∈(e,+∞),f′(x)>0,f(x)在(e,+∞)上是增加的, ∴當(dāng)x=e時,f(x)取得極小值f(e)=ln e+=2, ∴f(x)的極小值為2. (2)由題設(shè)g(x)=f′(x)-=--(x>0), 令g(x)=0,得m=-x3+x(x>0). 設(shè)φ(x)=-x3+x(x≥0),則φ′(x)=-x2+1=-(x-1)(x+1), 當(dāng)x∈(0,1)時,φ′(x)>0,φ(x)在(0,1)上是增加的; 當(dāng)x∈(1,+∞)時,φ′(x)<0,φ(x)在(1,
11、+∞)上單調(diào)遞減, ∴x=1是φ(x)唯一的極值點(diǎn),且是極大值點(diǎn),因此x=1也是φ(x)的最大值點(diǎn), ∴φ(x)的最大值為φ(1)=. 又φ(0)=0,結(jié)合y=φ(x)的圖像(如圖),可知 ①當(dāng)m>時,函數(shù)g(x)無零點(diǎn); ②當(dāng)m=時,函數(shù)g(x)有且只有一個零點(diǎn); ③當(dāng)0<m<時,函數(shù)g(x)有兩個零點(diǎn); ④當(dāng)m≤0時,函數(shù)g(x)有且只有一個零點(diǎn). 綜上所述,當(dāng)m>時,函數(shù)g(x)無零點(diǎn); 當(dāng)m=或m≤0時,函數(shù)g(x)有且只有一個零點(diǎn); 當(dāng)0<m<時,函數(shù)g(x)有兩個零點(diǎn). 熱點(diǎn)3 利用導(dǎo)數(shù)研究不等式問題 導(dǎo)數(shù)在不等式中的應(yīng)用問題是每年高
12、考的必考內(nèi)容,且以解答題的形式考查,難度較大,屬中高檔題.歸納起來常見的命題角度有:(1)證明不等式;(2)不等式恒成立問題;(3)存在型不等式成立問題. 角度1 證明不等式 (20xx全國卷Ⅰ)設(shè)函數(shù)f(x)=e2x-aln x. (1)討論f(x)的導(dǎo)函數(shù)f′(x)零點(diǎn)的個數(shù); (2)證明:當(dāng)a>0時,f(x)≥2a+aln. 【導(dǎo)學(xué)號:00090073】 [解] (1)f(x)的定義域?yàn)?0,+∞),f′(x)=2e2x-(x>0). 當(dāng)a≤0時,f′(x)>0,f′(x)沒有零點(diǎn); 當(dāng)a>0時,設(shè)u(x)=e2x,v(x)=-, 因?yàn)閡(x)=e2x
13、在(0,+∞)上是增加的,v(x)=-在(0,+∞)上是增加的, 所以f′(x)在(0,+∞)上是增加的. 又f′(a)>0,當(dāng)b滿足00時,f′(x)存在唯一零點(diǎn). (2)證明:由(1),可設(shè)f′(x)在(0,+∞)上的唯一零點(diǎn)為x0,當(dāng)x∈(0,x0)時,f′(x)<0; 當(dāng)x∈(x0,+∞)時,f′(x)>0. 故f(x)在(0,x0)上是減少的,在(x0,+∞)上是增加的,所以當(dāng)x=x0時,f(x)取得最小值,最小值為f(x0). 由于2e2x0-=0,所以f(x0)=+2ax0+aln≥2a+aln . 故當(dāng)a
14、>0時,f(x)≥2a+aln . 角度2 不等式恒成立問題 (20xx全國卷Ⅱ)已知函數(shù)f(x)=(x+1)ln x-a(x-1). (1)當(dāng)a=4時,求曲線y=f(x)在(1,f(1))處的切線方程; (2)若當(dāng)x∈(1,+∞)時,f(x)>0,求a的取值范圍. [解] (1)f(x)的定義域?yàn)?0,+∞). 當(dāng)a=4時,f(x)=(x+1)ln x-4(x-1), f(1)=0,f′(x)=ln x+-3,f′(1)=-2. 故曲線y=f(x)在(1,f(1))處的切線方程為2x+y-2=0. (2)當(dāng)x∈(1,+∞)時,f(x)>0等價于ln x->
15、0. 設(shè)g(x)=ln x-, 則g′(x)=-=,g(1)=0. ①當(dāng)a≤2,x∈(1,+∞)時,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上是增加的,因此g(x)>0; ②當(dāng)a>2時,令g′(x)=0得x1=a-1-,x2=a-1+. 由x2>1和x1x2=1得x1<1,故當(dāng)x∈(1,x2)時,g′(x)<0,g(x)在(1,x2)上是減少的,因此g(x)<0. 綜上,a的取值范圍是(-∞,2]. 角度3 存在型不等式成立問題 設(shè)函數(shù)f(x)=aln x+x2-bx(a≠1),曲線y=f(x)在點(diǎn)(1,f(1))處
16、的切線斜率為0.
(1)求b;
(2)若存在x0≥1,使得f(x0)<,求a的取值范圍.
【導(dǎo)學(xué)號:00090074】
[解] (1)f′(x)=+(1-a)x-B.
由題設(shè)知f′(1)=0,解得b=1. 2分
(2)f(x)的定義域?yàn)?0,+∞),
由(1)知,f(x)=aln x+x2-x,
f′(x)=+(1-a)x-1=(x-1).
①若a≤,則≤1,故當(dāng)x∈(1,+∞)時,f′(x)>0,f(x)在(1,+∞)上是增加的. 4分
所以,存在x0≥1,使得f(x0)<的充要條件為f(1)<,即-1<,解得--1
17、a<1,則>1,故當(dāng)x∈時,f′(x)<0,當(dāng)x∈時,f′(x)>0,f(x)在上是減少的,在上是增加的. 8分
所以存在x0≥1,使得f(x0)<的充要條件為f<.
而f=aln ++>,所以不合題意. 10分
③若a>1,則f(1)=-1=<恒成立,所以a>1.
綜上,a的取值范圍是(--1,-1)∪(1,+∞). 12分
[規(guī)律方法] 1.運(yùn)用導(dǎo)數(shù)證明不等式,常轉(zhuǎn)化為求函數(shù)的最值問題.
2.不等式恒成立通??梢岳煤瘮?shù)的單調(diào)性求出最值解決.解答相應(yīng)的參數(shù)不等式,如果易分離參數(shù),可先分離變量,構(gòu)造函數(shù),直接轉(zhuǎn)化為函數(shù)的最值問題,避免參數(shù)的討論.
3.“恒成立”與“存在性”問題的求解是“互補(bǔ)”關(guān)系,即f(x)≥g(a)對于x∈D恒成立,應(yīng)求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,應(yīng)求f(x)的最大值.應(yīng)特別關(guān)注等號是否成立問題.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭當(dāng)公安隊(duì)伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會圍繞六個干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長會長長的路慢慢地走