人教版 高中數(shù)學(xué)選修23 2.2.3獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布教案

上傳人:仙*** 文檔編號:41728278 上傳時間:2021-11-23 格式:DOC 頁數(shù):7 大小:294KB
收藏 版權(quán)申訴 舉報(bào) 下載
人教版 高中數(shù)學(xué)選修23 2.2.3獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布教案_第1頁
第1頁 / 共7頁
人教版 高中數(shù)學(xué)選修23 2.2.3獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布教案_第2頁
第2頁 / 共7頁
人教版 高中數(shù)學(xué)選修23 2.2.3獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布教案_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《人教版 高中數(shù)學(xué)選修23 2.2.3獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布教案》由會員分享,可在線閱讀,更多相關(guān)《人教版 高中數(shù)學(xué)選修23 2.2.3獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布教案(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、人教版高中數(shù)學(xué)精品資料223獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布教學(xué)目標(biāo):知識與技能:理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解答一些簡單的實(shí)際問題。過程與方法:能進(jìn)行一些與n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布有關(guān)的概率的計(jì)算。情感、態(tài)度與價(jià)值觀:承前啟后,感悟數(shù)學(xué)與生活的和諧之美 ,體現(xiàn)數(shù)學(xué)的文化功能與人文價(jià)值。教學(xué)重點(diǎn):理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解答一些簡單的實(shí)際問題教學(xué)難點(diǎn):能進(jìn)行一些與n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布有關(guān)的概率的計(jì)算授課類型:新授課 課時安排:1課時 教 具:多媒體、實(shí)物投影儀 教學(xué)過程:一、復(fù)習(xí)引入:1 事件的定義:隨機(jī)事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件;必

2、然事件:在一定條件下必然發(fā)生的事件;不可能事件:在一定條件下不可能發(fā)生的事件2隨機(jī)事件的概率:一般地,在大量重復(fù)進(jìn)行同一試驗(yàn)時,事件發(fā)生的頻率總是接近某個常數(shù),在它附近擺動,這時就把這個常數(shù)叫做事件的概率,記作3.概率的確定方法:通過進(jìn)行大量的重復(fù)試驗(yàn),用這個事件發(fā)生的頻率近似地作為它的概率;4概率的性質(zhì):必然事件的概率為,不可能事件的概率為,隨機(jī)事件的概率為,必然事件和不可能事件看作隨機(jī)事件的兩個極端情形 5基本事件:一次試驗(yàn)連同其中可能出現(xiàn)的每一個結(jié)果(事件)稱為一個基本事件6等可能性事件:如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有個,而且所有結(jié)果出現(xiàn)的可能性都相等,那么每個基本事件的概率都是,這種事

3、件叫等可能性事件7等可能性事件的概率:如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有個,而且所有結(jié)果都是等可能的,如果事件包含個結(jié)果,那么事件的概率8等可能性事件的概率公式及一般求解方法9.事件的和的意義:對于事件A和事件B是可以進(jìn)行加法運(yùn)算的10 互斥事件:不可能同時發(fā)生的兩個事件一般地:如果事件中的任何兩個都是互斥的,那么就說事件彼此互斥11對立事件:必然有一個發(fā)生的互斥事件12互斥事件的概率的求法:如果事件彼此互斥,那么 13相互獨(dú)立事件:事件(或)是否發(fā)生對事件(或)發(fā)生的概率沒有影響,這樣的兩個事件叫做相互獨(dú)立事件若與是相互獨(dú)立事件,則與,與,與也相互獨(dú)立14相互獨(dú)立事件同時發(fā)生的概率:一般地,如果

4、事件相互獨(dú)立,那么這個事件同時發(fā)生的概率,等于每個事件發(fā)生的概率的積, 二、講解新課:1獨(dú)立重復(fù)試驗(yàn)的定義:指在同樣條件下進(jìn)行的,各次之間相互獨(dú)立的一種試驗(yàn)2獨(dú)立重復(fù)試驗(yàn)的概率公式:一般地,如果在1次試驗(yàn)中某事件發(fā)生的概率是,那么在次獨(dú)立重復(fù)試驗(yàn)中這個事件恰好發(fā)生次的概率它是展開式的第項(xiàng)3.離散型隨機(jī)變量的二項(xiàng)分布:在一次隨機(jī)試驗(yàn)中,某事件可能發(fā)生也可能不發(fā)生,在n次獨(dú)立重復(fù)試驗(yàn)中這個事件發(fā)生的次數(shù)是一個隨機(jī)變量如果在一次試驗(yàn)中某事件發(fā)生的概率是P,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個事件恰好發(fā)生k次的概率是,(k0,1,2,,n,)于是得到隨機(jī)變量的概率分布如下:01knP由于恰好是二項(xiàng)展開式中的各

5、項(xiàng)的值,所以稱這樣的隨機(jī)變量服從二項(xiàng)分布(binomial distribution ),記作B(n,p),其中n,p為參數(shù),并記b(k;n,p)三、講解范例:例1某射手每次射擊擊中目標(biāo)的概率是0 . 8.求這名射手在 10 次射擊中,(1)恰有 8 次擊中目標(biāo)的概率; (2)至少有 8 次擊中目標(biāo)的概率(結(jié)果保留兩個有效數(shù)字) 解:設(shè)X為擊中目標(biāo)的次數(shù),則XB (10, 0.8 ) . (1)在 10 次射擊中,恰有 8 次擊中目標(biāo)的概率為 P (X = 8 ) .(2)在 10 次射擊中,至少有 8 次擊中目標(biāo)的概率為 P (X8) = P (X = 8) + P ( X = 9 ) +

6、P ( X = 10 ) .例2(2000年高考題)某廠生產(chǎn)電子元件,其產(chǎn)品的次品率為5%現(xiàn)從一批產(chǎn)品中任意地連續(xù)取出2件,寫出其中次品數(shù)的概率分布解:依題意,隨機(jī)變量B(2,5%)所以,P(=0)=(95%)=0.9025,P(=1)=(5%)(95%)=0.095,P()=(5%)=0.0025因此,次品數(shù)的概率分布是012P0.90250.0950.0025例3重復(fù)拋擲一枚篩子5次得到點(diǎn)數(shù)為6的次數(shù)記為,求P(>3)解:依題意,隨機(jī)變量BP(=4)=,P(=5)=P(>3)=P(=4)+P(=5)= 例4某氣象站天氣預(yù)報(bào)的準(zhǔn)確率為,計(jì)算(結(jié)果保留兩個有效數(shù)字):(1)5次預(yù)報(bào)

7、中恰有4次準(zhǔn)確的概率;(2)5次預(yù)報(bào)中至少有4次準(zhǔn)確的概率解:(1)記“預(yù)報(bào)1次,結(jié)果準(zhǔn)確”為事件預(yù)報(bào)5次相當(dāng)于5次獨(dú)立重復(fù)試驗(yàn),根據(jù)次獨(dú)立重復(fù)試驗(yàn)中某事件恰好發(fā)生次的概率計(jì)算公式,5次預(yù)報(bào)中恰有4次準(zhǔn)確的概率答:5次預(yù)報(bào)中恰有4次準(zhǔn)確的概率約為0.41.(2)5次預(yù)報(bào)中至少有4次準(zhǔn)確的概率,就是5次預(yù)報(bào)中恰有4次準(zhǔn)確的概率與5次預(yù)報(bào)都準(zhǔn)確的概率的和,即 答:5次預(yù)報(bào)中至少有4次準(zhǔn)確的概率約為0.74例5某車間的5臺機(jī)床在1小時內(nèi)需要工人照管的概率都是,求1小時內(nèi)5臺機(jī)床中至少2臺需要工人照管的概率是多少?(結(jié)果保留兩個有效數(shù)字)解:記事件“1小時內(nèi),1臺機(jī)器需要人照管”,1小時內(nèi)5臺機(jī)器需要

8、照管相當(dāng)于5次獨(dú)立重復(fù)試驗(yàn)1小時內(nèi)5臺機(jī)床中沒有1臺需要工人照管的概率,1小時內(nèi)5臺機(jī)床中恰有1臺需要工人照管的概率,所以1小時內(nèi)5臺機(jī)床中至少2臺需要工人照管的概率為答:1小時內(nèi)5臺機(jī)床中至少2臺需要工人照管的概率約為點(diǎn)評:“至多”,“至少”問題往往考慮逆向思維法例6某人對一目標(biāo)進(jìn)行射擊,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少應(yīng)射擊幾次?解:設(shè)要使至少命中1次的概率不小于0.75,應(yīng)射擊次記事件“射擊一次,擊中目標(biāo)”,則射擊次相當(dāng)于次獨(dú)立重復(fù)試驗(yàn),事件至少發(fā)生1次的概率為由題意,令,至少取5答:要使至少命中1次的概率不小于0.75,至少應(yīng)射擊5次例7十層電梯從低層

9、到頂層停不少于3次的概率是多少?停幾次概率最大?解:依題意,從低層到頂層停不少于3次,應(yīng)包括停3次,停4次,停5次,直到停9次從低層到頂層停不少于3次的概率設(shè)從低層到頂層停次,則其概率為,當(dāng)或時,最大,即最大,答:從低層到頂層停不少于3次的概率為,停4次或5次概率最大例8實(shí)力相等的甲、乙兩隊(duì)參加乒乓球團(tuán)體比賽,規(guī)定5局3勝制(即5局內(nèi)誰先贏3局就算勝出并停止比賽)(1)試分別求甲打完3局、4局、5局才能取勝的概率(2)按比賽規(guī)則甲獲勝的概率解:甲、乙兩隊(duì)實(shí)力相等,所以每局比賽甲獲勝的概率為,乙獲勝的概率為記事件=“甲打完3局才能取勝”,記事件=“甲打完4局才能取勝”,記事件=“甲打完5局才能取

10、勝”甲打完3局取勝,相當(dāng)于進(jìn)行3次獨(dú)立重復(fù)試驗(yàn),且每局比賽甲均取勝甲打完3局取勝的概率為甲打完4局才能取勝,相當(dāng)于進(jìn)行4次獨(dú)立重復(fù)試驗(yàn),且甲第4局比賽取勝,前3局為2勝1負(fù)甲打完4局才能取勝的概率為甲打完5局才能取勝,相當(dāng)于進(jìn)行5次獨(dú)立重復(fù)試驗(yàn),且甲第5局比賽取勝,前4局恰好2勝2負(fù)甲打完5局才能取勝的概率為(2)事件“按比賽規(guī)則甲獲勝”,則,又因?yàn)槭录?、彼此互斥,故答:按比賽?guī)則甲獲勝的概率為例9一批玉米種子,其發(fā)芽率是0.8.(1)問每穴至少種幾粒,才能保證每穴至少有一粒發(fā)芽的概率大于?(2)若每穴種3粒,求恰好兩粒發(fā)芽的概率()解:記事件“種一粒種子,發(fā)芽”,則,(1)設(shè)每穴至少種粒,才

11、能保證每穴至少有一粒發(fā)芽的概率大于每穴種粒相當(dāng)于次獨(dú)立重復(fù)試驗(yàn),記事件“每穴至少有一粒發(fā)芽”,則由題意,令,所以,兩邊取常用對數(shù)得,即,且,所以取答:每穴至少種3粒,才能保證每穴至少有一粒發(fā)芽的概率大于(2)每穴種3粒相當(dāng)于3次獨(dú)立重復(fù)試驗(yàn),每穴種3粒,恰好兩粒發(fā)芽的概率為,答:每穴種3粒,恰好兩粒發(fā)芽的概率為0.384 四、課堂練習(xí): 1每次試驗(yàn)的成功率為,重復(fù)進(jìn)行10次試驗(yàn),其中前7次都未成功后3次都成功的概率為( ) 210張獎券中含有3張中獎的獎券,每人購買1張,則前3個購買者中,恰有一人中獎的概率為( ) 3某人有5把鑰匙,其中有兩把房門鑰匙,但忘記了開房門的是哪兩把,只好逐把試開,

12、則此人在3次內(nèi)能開房門的概率是 ( ) 4甲、乙兩隊(duì)參加乒乓球團(tuán)體比賽,甲隊(duì)與乙隊(duì)實(shí)力之比為,比賽時均能正常發(fā)揮技術(shù)水平,則在5局3勝制中,甲打完4局才勝的概率為( ) 5一射手命中10環(huán)的概率為0.7,命中9環(huán)的概率為0.3,則該射手打3發(fā)得到不少于29環(huán)的概率為 (設(shè)每次命中的環(huán)數(shù)都是自然數(shù))6一名籃球運(yùn)動員投籃命中率為,在一次決賽中投10個球,則投中的球數(shù)不少于9個的概率為 7一射手對同一目標(biāo)獨(dú)立地進(jìn)行4次射擊,已知至少命中一次的概率為,則此射手的命中率為 8某車間有5臺車床,每臺車床的停車或開車是相互獨(dú)立的,若每臺車床在任一時刻處于停車狀態(tài)的概率為,求:(1)在任一時刻車間有3臺車床處

13、于停車的概率;(2)至少有一臺處于停車的概率9種植某種樹苗,成活率為90%,現(xiàn)在種植這種樹苗5棵,試求:全部成活的概率; 全部死亡的概率;恰好成活3棵的概率; 至少成活4棵的概率10(1)設(shè)在四次獨(dú)立重復(fù)試驗(yàn)中,事件至少發(fā)生一次的概率為,試求在一次試驗(yàn)中事件發(fā)生的概率(2)某人向某個目標(biāo)射擊,直至擊中目標(biāo)為止,每次射擊擊中目標(biāo)的概率為,求在第次才擊中目標(biāo)的概率答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.046 7. 8.(1)(2)9.; ; ; 10.(1) (2) 五、小結(jié) :1獨(dú)立重復(fù)試驗(yàn)要從三方面考慮第一:每次試驗(yàn)是在同樣條件下進(jìn)行第二:各次試驗(yàn)中的事件是

14、相互獨(dú)立的第三,每次試驗(yàn)都只有兩種結(jié)果,即事件要么發(fā)生,要么不發(fā)生2如果1次試驗(yàn)中某事件發(fā)生的概率是,那么次獨(dú)立重復(fù)試驗(yàn)中這個事件恰好發(fā)生次的概率為對于此式可以這么理解:由于1次試驗(yàn)中事件要么發(fā)生,要么不發(fā)生,所以在次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生次,則在另外的次中沒有發(fā)生,即發(fā)生,由,所以上面的公式恰為展開式中的第項(xiàng),可見排列組合、二項(xiàng)式定理及概率間存在著密切的聯(lián)系 六、課后作業(yè):課本58頁 練習(xí)1、2、3、4第60頁 習(xí)題 2. 2 B組2、3七、板書設(shè)計(jì)(略) 八、課后記: 教學(xué)反思:1. 理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解答一些簡單的實(shí)際問題。2. 能進(jìn)行一些與n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布有關(guān)的概率的計(jì)算。3. 承前啟后,感悟數(shù)學(xué)與生活的和諧之美 ,體現(xiàn)數(shù)學(xué)的文化功能與人文價(jià)值。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!