高考數(shù)學(xué)復(fù)習(xí):第八章 :第一節(jié)直線的傾斜角與斜率、直線的方程突破熱點題型

上傳人:仙*** 文檔編號:40842691 上傳時間:2021-11-17 格式:DOC 頁數(shù):5 大?。?14.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)復(fù)習(xí):第八章 :第一節(jié)直線的傾斜角與斜率、直線的方程突破熱點題型_第1頁
第1頁 / 共5頁
高考數(shù)學(xué)復(fù)習(xí):第八章 :第一節(jié)直線的傾斜角與斜率、直線的方程突破熱點題型_第2頁
第2頁 / 共5頁
高考數(shù)學(xué)復(fù)習(xí):第八章 :第一節(jié)直線的傾斜角與斜率、直線的方程突破熱點題型_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)復(fù)習(xí):第八章 :第一節(jié)直線的傾斜角與斜率、直線的方程突破熱點題型》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)復(fù)習(xí):第八章 :第一節(jié)直線的傾斜角與斜率、直線的方程突破熱點題型(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、△+△2019年數(shù)學(xué)高考教學(xué)資料△+△ 第一節(jié) 直線的傾斜角與斜率、直線的方程 考點一 直線的傾斜角與斜率   [例1] (1)直線xsin α+y+2=0的傾斜角的取值范圍是(  ) A.[0,π) B.∪ C. D.∪ (2)直線l過點P(1,0),且與以A(2,1),B(0,)為端點的線段有公共點,則直線l斜率的取值范圍為________. [自主解答] (1)設(shè)直線的傾斜角為θ,則有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ ≤或≤ θ<π. (2) 如右圖,∵kAP

2、==1, kBP==-, ∴k∈(-∞,- ]∪[1,+∞). [答案] (1)B (2)(-∞,- ]∪[1,+∞) 【互動探究】 若將P(1,0)改為P(-1,0),其他條件不變,求直線l斜率的取值范圍. 解:∵P(-1,0),A(2,1),B(0,), ∴kAP==, kBP==. 如圖可知,直線l斜率的取值范圍為.      【方法規(guī)律】 斜率的求法 (1)定義法:若已知直線的傾斜角α或α的某種三角函數(shù)值,一般根據(jù)k=tan α求斜率; (2)公式法:若已知直線上兩點A(x1,y1),B(x2,y2),一般根據(jù)斜率公式k=(x1≠x2)求斜率.

3、 1.已知兩點A(-3, ),B(,-1),則直線AB的斜率是(  ) A. B.- C. D.- 解析:選D 因為A(-3,),B(,-1),所以斜率k==-. 2.設(shè)直線ax+by+c=0的傾斜角為α,且sin α+cos α=0,則a,b滿足(  ) A.a(chǎn)+b=1 B.a(chǎn)-b=1 C.a(chǎn)+b=0 D.a(chǎn)-b=0 解析:選D 因為sin α+cos α=0, 所以tan α=-1. 又因為α為傾斜角,所以斜率k=-1. 而直線ax+by+c=0的斜率k=-, 所以-=-1,即a-b=

4、0. 考點二 直線的平行與垂直的判斷及應(yīng)用   [例2] (1)過點(1,0)且與直線x-2y-2=0平行的直線方程是(  ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 (2)(2014青島模擬)已知a≠0,直線ax+(b+2)y+4=0與直線ax+(b-2)y-3=0互相垂直,則ab的最大值為 (  ) A.0 B.2 C.4 D. [自主解答] (1)因為所求直線與直線x-2y-2=0平行,所以設(shè)所求直線方程為x-2y+c=0,又因為該直線過點(1,

5、0),所以1-20+c=0,即c=-1,因此,所求直線方程為x-2y-1=0. (2)若b=2,兩直線方程為y=-x-1和x=,此時兩直線相交但不垂直. 若b=-2,兩直線方程為x=-和y=x-,此時兩直線相交但不垂直. 若b≠2,此時,兩直線方程為y=-x-和y=-x+,此時兩直線的斜率分別為-,-,由-=-1,得a2+b2=4. 因為a2+b2=4≥2ab,所以ab≤2,即ab的最大值是2,當(dāng)且僅當(dāng)a=b=時取等號. [答案] (1)A (2)B 【方法規(guī)律】 用一般式確定兩直線位置關(guān)系的方法[來源:] 直線方程 l1:A1x+B1y+C1=0(A+B≠0) l2:A2

6、x+B2y+C2=0(A+B≠0) l1與l2垂直 的充要條件 A1A2+B1B2=0 l1與l2平行 的充分條件 =≠(A2B2C2≠0) l1與l2相交 的充分條件 ≠(A2B2≠0) l1與l2重合 的充分條件 ==(A2B2C2≠0) [來源:] 1.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a=________. 解析:因為兩直線垂直,所以a(a+2)+1=0,解得a=-1. 答案:-1 2.若直線ax+2y+3a=0與直線3x+(a-1)y=-7+a平行,則實數(shù)a的值為________. 解析:顯然當(dāng)a=1時兩直線不平行;當(dāng)a

7、≠1時,k1=-,k2=,因為兩條直線平行,所以k1=k2,解得a=3或a=-2.經(jīng)檢驗,a=-2時兩直線重合,故a=3. 答案:3 高頻考點 考點三 直 線 方 程   1.直線方程是解析幾何的一個基礎(chǔ)內(nèi)容,在高考中經(jīng)常與其他知識結(jié)合考查,多以選擇、填空題的形式呈現(xiàn),難度不大,多為中、低檔題目. 2.高考中對直線方程的考查主要有以下幾個命題角度: (1)已知兩個獨立條件,求直線方程; (2)已知直線方程,求直線的傾斜角、斜率;[來源:] (3)已知直線方程,判斷兩直線的位置關(guān)系; (4)已知直線方程及其他條件,求參數(shù)值或范圍. [例3] (1)(201

8、4泉州模擬)若點(m,n)在直線4x+3y-10=0上,則m2+n2的最小值是(  ) A.2 B.2 C.4 D.2 (2)直線l經(jīng)過點P(3,2)且與x軸、y軸的正半軸分別交于A,B兩點.△OAB的面積為12,則直線l的方程是____________________________________________________________. [自主解答] (1)因為點(m,n)在直線4x+3y-10=0上,所以4m+3n-10=0,利用m2+n2表示為直線上的點到原點距離的平方的最小值來分析可知,m2+n2的最小值為4. (2)法一:設(shè)直

9、線l的方程為+=1(a>0,b>0). 則有+=1,且ab=12. 解得a=6,b=4. 所以所求直線l的方程為+=1, 即2x+3y-12=0. 法二:設(shè)直線l的方程為y-2=k(x-3)(k<0), 令x=0,得y=2-3k>0; 令y=0,得x=3->0. 所以S△OAB=(2-3k)=12,解得k=-, 故所求直線方程為y-2=-(x-3),即2x+3y-12=0. [答案] (1)C (2)2x+3y-12=0 與直線方程有關(guān)問題的常見類型及解題策略 (1)求直線方程.弄清確定直線的兩個條件,由直線方程的幾種特殊形式直接寫出方程. (2)求直線的傾斜角和

10、斜率.直線Ax+By+C=0.若B=0,直線的斜率不存在,傾斜角為90;若B≠0,則斜率k=-,然后再求傾斜角. (3)判斷兩條直線的位置關(guān)系.可由兩直線的斜率以及在y軸上的截距來判斷兩直線的位置關(guān)系. (4)求參數(shù)值或范圍.注意點在直線上,則點的坐標(biāo)適合直線的方程,再結(jié)合函數(shù)的單調(diào)性或基本不等式求解. 1.(2013山東高考)過點(3,1)作圓(x-1)2+y2=1的兩條切線,切點分別為A,B,則直線AB的方程為(  ) A.2x+y-3=0 B.2x-y-3=0 C.4x-y-3=0 D.4x+y-3=0

11、 解析: 選A 如圖所示,圓心坐標(biāo)為C(1,0),易知A(1,1). 又kABkPC=-1,且kPC==, 則kAB=-2. 故直線AB的方程為y-1=-2(x-1). 即2x+y-3=0.[來源:] 2.(2013廣東高考)垂直于直線y=x+1且與圓x2+y2=1相切于第一象限的直線方程是(  ) A.x+y-=0 B.x+y+1=0 C.x+y-1=0 D.x+y+=0 解析:選A 因為所求直線與y=x+1垂直,所以可設(shè)直線方程x+y+c=0. 又因為該直線與圓x2+y2=1相切. 所以=

12、=1,∴c=, 又因為切點在第一象限,所以c=-. 即切線方程為x+y-=0. 3.(2014遼寧六校聯(lián)考)已知直線l1:(k-3)x+(4-k)y+1=0與l2:2(k-3)x-2y+3=0平行,則k的值是________. 解析:當(dāng)k=4時,直線l1的斜率不存在,直線l2的斜率為1,兩直線不平行;當(dāng)k≠4時,兩直線平行的一個必要條件是=k-3,解得k=3或k=5,但必須滿足截距不相等,經(jīng)檢驗,知k=3或k=5時兩直線的截距都不相等,故k=3或k=5. 答案:3或5 ———————————[課堂歸納——通法領(lǐng)悟]———————————————— 1個關(guān)系——直線的傾斜角和

13、斜率的關(guān)系  (1)任何直線都存在傾斜角,但并不是任意直線都存在斜率.[來源:數(shù)理化網(wǎng)] (2)直線的傾斜角α和斜率k之間的對應(yīng)關(guān)系: α 0 0<α<90 90 90<α<180 k 0 k>0 不存在 k<0 3個注意點——與直線方程的適用條件、截距、斜率有關(guān) 問題的注意點  (1)明確直線方程各種形式的適用條件 點斜式、斜截式方程適用于不垂直于x軸的直線;兩點式方程不能表示垂直于x、y軸的直線;截距式方程不能表示垂直于坐標(biāo)軸和過原點的直線. (2)截距不是距離,距離是非負(fù)值,而截距可正可負(fù),可為零,在與截距有關(guān)的問題中,要注意討論截距是否為零. (3)求直線方程時,若不能斷定直線是否具有斜率時,應(yīng)注意分類討論,即應(yīng)對斜率是否存在加以討論. 高考數(shù)學(xué)復(fù)習(xí)精品 高考數(shù)學(xué)復(fù)習(xí)精品

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!