高中數(shù)學(xué) 模塊綜合測評 新人教A版選修21

上傳人:仙*** 文檔編號:37984709 上傳時(shí)間:2021-11-05 格式:DOC 頁數(shù):9 大小:202.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué) 模塊綜合測評 新人教A版選修21_第1頁
第1頁 / 共9頁
高中數(shù)學(xué) 模塊綜合測評 新人教A版選修21_第2頁
第2頁 / 共9頁
高中數(shù)學(xué) 模塊綜合測評 新人教A版選修21_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 模塊綜合測評 新人教A版選修21》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 模塊綜合測評 新人教A版選修21(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 模塊綜合測評 (滿分:150分 時(shí)間:120分鐘) 一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的) 1.已知a∈R,則“a<2”是“a2<2a”的(  ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 B [∵a2<2a?a(a-2)<0?0<a<2. ∴“a<2”是“a2<2a”的必要不充分條件.] 2.已知命題p:?x>0,總有(x+1)ex>1,則﹁p為(  ) A.?x0≤0,使得(x0+1)e≤1 B.?x0>0,使得(x0+1)e≤1 C.?x>0,總有(x+1

2、)e≤1 D.?x≤0,總有(x+1)e≤1 B [命題p為全稱命題,所以﹁p為?x0>0,使得(x0+1)e≤1.故選B.] 3.若橢圓+=1(a>b>0)的離心率為,則雙曲線-=1的離心率為(  ) A.    B.    C.    D. B [由題意,1-==,∴=,而雙曲線的離心率e2=1+=1+=,∴e=.] 4.已知空間向量a=(t,1,t),b=(t-2,t,1),則|a-b|的最小值為(  ) A. B. C.2 D.4 C [|a-b|=≥2,故選C.] 5.橢圓+=1與橢圓+=1有(  ) A.相同短軸 B.相同長軸 C.相同離心率 D.以上都不

3、對 D [對于+=1,有a2>9或a2<9,因此這兩個(gè)橢圓可能長軸相同,也可能短軸相同,離心率是不確定的,因此A,B,C均不正確,故選D.] 6.長方體ABCDA1B1C1D1中,AB=2,AD=AA1=1,則二面角C1ABC為(  ) 【導(dǎo)學(xué)號:46342198】 A. B. C. D. D [以A為原點(diǎn),直線AB,AD,AA1分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則平面ABC的一個(gè)法向量為=(0,0,1),平面ABC1的一個(gè)法向量為=(0,1,-1),∴cos〈,〉==-,∴〈,〉=,又二面角C1ABC為銳角,即π-π=,故選D.] 7.命題“?x∈[1,2],x2

4、-a≤0”為真命題的一個(gè)充分不必要條件是(  ) A.a(chǎn)≥4 B.a(chǎn)≤4 C.a(chǎn)≥5 D.a(chǎn)≤5 C [∵?x∈[1,2],1≤x2≤4,∴要使x2-a≤0為真,則a≥x2,即a≥4,本題求的是充分不必要條件,結(jié)合選項(xiàng),只有C符合,故選C.] 8.設(shè)斜率為2的直線l過拋物線y2=ax(a≠0)的焦點(diǎn)F,且和y軸交于點(diǎn)A,若△OAF(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線的方程為(  ) A.y2=4x B.y2=8x C.y2=4x D.y2=8x B [由已知可得,拋物線的焦點(diǎn)坐標(biāo)為.又直線l的斜率為2,故直線l的方程為y=2,則|OA|=,故S△OAF==4,解得a=8,故拋物線

5、的方程為y2=8x.] 9.已知A(1,2,3),B(2,1,2),C(1,1,2),O為坐標(biāo)原點(diǎn),點(diǎn)D在直線OC上運(yùn)動(dòng),則當(dāng)取最小值時(shí),點(diǎn)D的坐標(biāo)為(  ) A. B. C. D. C [點(diǎn)D在直線OC上運(yùn)動(dòng),因而可設(shè)=(a,a,2a),則=(1-a,2-a,3-2a),=(2-a,1-a,2-2a),=(1-a)(2-a)+(2-a)(1-a)+(3-2a)(2-2a)=6a2-16a+10,所以a=時(shí)取最小值,此時(shí)=.] 10.過橢圓C:+=1(a>b>0)的左頂點(diǎn)A的斜率為k的直線交橢圓C 于另一點(diǎn)B,且點(diǎn)B在x軸上的射影恰好為右焦點(diǎn)F,若橢圓的離心率為,則k的值為(

6、  ) A.- B. C. D. C [由題意知點(diǎn)B的橫坐標(biāo)是c,故點(diǎn)B的坐標(biāo)為,則斜率k=====(1-e)=,故選C.] 11.若F1,F(xiàn)2為雙曲線C:-y2=1的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,∠F1PF2=60,則點(diǎn)P到x軸的距離為(  ) A. B. C. D. B [設(shè)|PF1|=r1,|PF2|=r2,點(diǎn)P到x軸的距離為|yP|,則S△F1PF2=r1r2sin 60=r1r2,又4c2=r+r-2r1r2cos 60=(r1-r2)2+2r1r2-r1r2=4a2+r1r2,得r1r2=4c2-4a2=4b2=4,所以S△F1PF2=r1r2sin 60

7、==2c|yP|=|yP|,得|yP|=,故選B.] 12.拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A,B是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=.設(shè)線段AB的中點(diǎn)M在l上的投影為N,則的最大值是(  ) 【導(dǎo)學(xué)號:46342199】 A. B. C. D. C [如圖.設(shè)|AF|=r1,|BF|=r2,則|MN|=.在△AFB中,因?yàn)閨AF|=r1,|BF|=r2且∠AFB=,所以由余弦定理,得|AB|==,所以===≤=,當(dāng)且僅當(dāng)r1=r2時(shí)取等號.故選C.] 二、填空題(本大題共4小題,每小題5分,共20分,將答案填在題中的橫線上) 13.已知點(diǎn)P是平行四邊形

8、ABCD所在平面外的一點(diǎn),如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).對于下列結(jié)論:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正確的是________(填序號). ①②③ [∵=-2-2+4=0,∴⊥,即AP⊥AB,①正確;∵=-4+4=0,∴⊥,即AP⊥AD,②正確;由①②可得是平面ABCD的法向量,③正確;由③可得⊥,④錯(cuò)誤.] 14.已知雙曲線-=1(a>0,b>0)的一條漸近線平行于直線l:y=2x+10,雙曲線的一個(gè)焦點(diǎn)在直線l上,則雙曲線的方程為________. -=1 [由已知得=2,所以b=2a.在y=2x+10中令y=0得x

9、=-5,故c=5,從而a2+b2=5a2=c2=25,所以a2=5,b2=20,所以雙曲線的方程為-=1.] 15.在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3,則橢圓C的方程為________. +y2=1 [由e==,得c2=a2,所以b2=a2-c2=a2 設(shè)P(x,y)是橢圓C上任意一點(diǎn),則+=1,所以x2=a2(1-)=a2-3y2.|PQ|===, 當(dāng)y=-1時(shí),|PQ|有最大值.由=3,可得a2=3, 所以b2=1,故橢圓C的方程為+y2=1.] 16.四棱錐PABCD中,PD⊥底面ABCD,

10、底面ABCD是正方形,且PD=AB=1,G為△ABC的重心,則PG與底面ABCD所成的角θ的正弦值為________. 【導(dǎo)學(xué)號:46342200】  [如圖,分別以DA,DC,DP所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,由已知P(0,0,1),A(1,0,0),B(1,1,0),C(0,1,0),則重心G,因此=(0,0,1),=,所以sin θ=|cos〈,〉|==.] 三、解答題(本大題共6小題,共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟) 17.(本小題滿分10分)設(shè)集合A={x|x2-3x+2=0},B={x|ax=1}.“x∈B”是“x∈A”的充分不必要條件,

11、試求滿足條件的實(shí)數(shù)a組成的集合. [解] ∵A={x|x2-3x+2=0}={1,2}, 由于“x∈B”是“x∈A”的充分不必要條件,∴BA. 當(dāng)B=?時(shí),得a=0; 當(dāng)B≠?時(shí),由題意得B={1}或B={2}. 則當(dāng)B={1}時(shí),得a=1;當(dāng)B={2}時(shí),得a=. 綜上所述,實(shí)數(shù)a組成的集合是. 18.(本小題滿分12分)已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為,且過點(diǎn)(4,-). (1)求雙曲線的方程; (2)若點(diǎn)M(3,m)在雙曲線上,求證:=0. [解] (1)由雙曲線的離心率為,可知雙曲線為等軸雙曲線,設(shè)雙曲線的方程為x2-y2=λ,又雙曲線過點(diǎn)

12、(4,-),代入解得λ=6,故雙曲線的方程為x2-y2=6. (2)證明:由雙曲線的方程為x2-y2=6,可得a=b=,c=2,所以F1(-2,0),F(xiàn)2(2,0).由點(diǎn)M(3,m),得=(-2-3,-m),=(2-3,-m),又點(diǎn)M(3,m)在雙曲線上,所以9-m2=6,解得m2=3,所以=m2-3=0. 19. (本小題滿分12分)如圖1,在四棱柱ABCDA1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0). 圖1 (1)求證:CD⊥平面ADD1A1; (2)若直線AA1與平面AB1C所成角的正弦值為,

13、求k的值. 【導(dǎo)學(xué)號:46342201】 [解] (1)證明:取CD的中點(diǎn)E,連接BE,如圖(1). (1) ∵AB∥DE,AB=DE=3k, ∴四邊形ABED為平行四邊形, ∴BE∥AD且BE=AD=4k. 在△BCE中,∵BE=4k,CE=3k,BC=5k, ∴BE2+CE2=BC2,∴∠BEC=90,即BE⊥CD. 又∵BE∥AD,∴CD⊥AD. ∵AA1⊥平面ABCD,CD?平面ABCD,∴AA1⊥CD. 又AA1∩AD=A,∴CD⊥平面ADD1A1. (2)以D為原點(diǎn),,,的方向?yàn)閤,y,z軸的正方向建立如圖(2)所示的空間直角坐標(biāo)系,則A(4k,0,0

14、),C(0,6k,0),B1(4k,3k,1),A1(4k,0,1), (2) ∴=(-4k,6k,0),=(0,3k,1),=(0,0,1). 設(shè)平面AB1C的法向量n=(x,y,z),則由得 取y=2,得n=(3,2,-6k). 設(shè)AA1與平面AB1C所成的角為θ,則 sin θ=|cos〈,n〉|===,解得k=1,故所求k的值為1. 20. (本小題滿分12分)如圖2,過拋物線y2=2px(p>0)的焦點(diǎn)F作一條傾斜角為的直線與拋物線相交于A,B兩點(diǎn). 圖2 (1)用p表示|AB|; (2)若=-3,求這個(gè)拋物線的方程. [解] (1)拋物線的焦點(diǎn)為F

15、,過點(diǎn)F且傾斜角為的直線方程為y=x-. 設(shè)A(x1,y1),B(x2,y2),由 得x2-3px+=0, ∴x1+x2=3p,x1x2=, ∴|AB|=x1+x2+p=4p. (2)由(1)知,x1x2=,x1+x2=3p, ∴y1y2==x1x2-(x1+x2)+=-+=-p2,∴=x1x2+y1y2=-p2=-=-3,解得p2=4,∴p=2. ∴這個(gè)拋物線的方程為y2=4x. 21.(本小題滿分12分)如圖3所示,四棱錐PABCD的底面是邊長為1的正方形,PA⊥CD,PA=1,PD=,E為PD上一點(diǎn),PE=2ED. 圖3 (1)求證:PA⊥平面ABCD; (2)

16、在側(cè)棱PC上是否存在一點(diǎn)F,使得BF∥平面AEC?若存在,指出F點(diǎn)的位置,并證明;若不存在,說明理由. [解] (1)證明:∵PA=AD=1,PD=, ∴PA2+AD2=PD2, 即PA⊥AD. 又PA⊥CD,AD∩CD=D,∴PA⊥平面ABCD. (2)以A為原點(diǎn),AB,AD,AP所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系. 則A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1), E,=(1,1,0),=.設(shè)平面AEC的法向量為n=(x,y,z), 則 即令y=1, 則n=(-1,1,-2). 假設(shè)側(cè)棱PC上存在一點(diǎn)F,且=λ(0≤λ≤1)

17、, 使得BF∥平面AEC,則n=0. 又∵=+=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴n=λ+1-λ-2λ=0,∴λ=, ∴存在點(diǎn)F,使得BF∥平面AEC,且F為PC的中點(diǎn). 22. (本小題滿分12分)如圖4,在平面直角坐標(biāo)系xOy中,F(xiàn)1,F(xiàn)2分別是橢圓+=1(a>b>0)的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)為(0,b),連接BF2并延長交橢圓于點(diǎn)A,過點(diǎn)A作x軸的垂線交橢圓于另一點(diǎn)C,連接F1C. 圖4 (1)若點(diǎn)C的坐標(biāo)為,且BF2=,求橢圓的方程; (2)若F1C⊥AB,求橢圓離心率e的值. 【導(dǎo)學(xué)號:46342202】 [解] (1)∵BF2

18、=,而BF=OB2+OF=b2+c2=2=a2, ∵點(diǎn)C在橢圓上,C, ∴+=1, ∴b2=1,∴橢圓的方程為+y2=1. (2)直線BF2的方程為+=1,與橢圓方程+=1聯(lián)立方程組, 解得A點(diǎn)坐標(biāo)為, 則C點(diǎn)的坐標(biāo)為, 又F1為(-c,0),k==, 又kAB=-,由F1C⊥AB,得=-1, 即b4=3a2c2+c4,所以(a2-c2)2=3a2c2+c4,化簡得e==. 6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!