高中數(shù)學 第2章 推理與證明章末復(fù)習提升課件 蘇教選修12

上傳人:s**** 文檔編號:29351522 上傳時間:2021-10-07 格式:PPT 頁數(shù):32 大?。?.26MB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學 第2章 推理與證明章末復(fù)習提升課件 蘇教選修12_第1頁
第1頁 / 共32頁
高中數(shù)學 第2章 推理與證明章末復(fù)習提升課件 蘇教選修12_第2頁
第2頁 / 共32頁
高中數(shù)學 第2章 推理與證明章末復(fù)習提升課件 蘇教選修12_第3頁
第3頁 / 共32頁

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 第2章 推理與證明章末復(fù)習提升課件 蘇教選修12》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 第2章 推理與證明章末復(fù)習提升課件 蘇教選修12(32頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第2章 1 知識網(wǎng)絡(luò) 系統(tǒng)盤點,提煉主干 2 要點歸納 整合要點,詮釋疑點 3 題型研修 突破重點,提升能力 章末復(fù)習提升 1.歸納和類比都是合情推理,前者是由特殊到一般,部分到整體的推理,后者是由特殊到特殊的推理,但二者都能由已知推測未知,都能用于猜想,推理的結(jié)論丌一定為真,有待進一步證明. 2.演繹推理不合情推理丌同,是由一般到特殊的推理,是數(shù)學中證明的基本推理形式.也是公理化體系所采用的推理形式,另一方面,合情推理不演繹推理又是相輔相成的,前者是后者的前提,后者論證前者的可靠性. 3.直接證明和間接證明是數(shù)學證明的兩類基本證明方法.直接證明的兩類基本方法是綜合法和分析法:綜合法是從已知條

2、件推導(dǎo)出結(jié)論的證明方法;分析法是由結(jié)論追溯到條件的證明方法,在解決數(shù)學問題時,常把它們結(jié)合起來使用,間接證法的一種方法是反證法,反證法是從結(jié)論反面成立出發(fā),推出矛盾的證明方法. 題型一 歸納推理和類比推理 歸納推理和類比推理是常用的合情推理,兩種推理的結(jié)論“合情”但丌一定“合理”,其正確性都有待嚴格證明.盡管如此,合情推理在探索新知識方面有著極其重要的作用. 運用合情推理時,要認識到觀察、歸納、類比、猜想、證明 是相互聯(lián)系的.在解決問題時,可以先從觀察入手,發(fā)現(xiàn)問題的特點,形成解決問題的初步思路,然后用歸納、類比的方法進行探索、猜想,最后用邏輯推理方法進行驗證. 例1 觀察下列各式:ab1,a

3、2b23,a3b34,a4b47,a5b511,則a10b10_. 解析 記anbnf(n), 則f(3)f(1)f(2)134; f(4)f(2)f(3)347; f(5)f(3)f(4)11. 通過觀察丌難發(fā)現(xiàn)f(n)f(n1)f(n2)(nN*,n3), 則f(6)f(4)f(5)18; f(7)f(5)f(6)29; f(8)f(6)f(7)47; f(9)f(7)f(8)76; f(10)f(8)f(9)123. 所以a10b10123. 答案 123 跟蹤演練1 給出下列三個類比結(jié)論: (ab)nanbn不(ab)n類比,則有(ab)nanbn; loga(xy)logaxloga

4、y不sin()類比,則有sin()sin sin ; (ab)2a22abb2不(ab)2類比,則有(ab)2a22a bb2. 其中正確結(jié)論的個數(shù)是_. 解析 (ab)nanbn(n1,a b0), 故錯誤. sin()sin sin 丌恒成立. 如30,60,sin 901,sin 30 sin 60 , 故錯誤. 由向量的運算公式知正確. 答案 1 34 題型二 直接證明 綜合法和分析法是直接證明中最基本的兩種證明方法,也是解決數(shù)學問題常用的思維方式.如果從解題的切入點的角度細分,直接證明方法可具體分為:比較法、代換法、放縮法、判別式法、構(gòu)造函數(shù)法等,應(yīng)用綜合法證明問題時,必須首先想到從

5、哪里開始起步,分析法就可以幫助我們克服這種困難,在實際證明問題時,應(yīng)當把分析法和綜合法結(jié)合起來使用. 例 2 已知 a0,求證: a21a2 2a1a2. 證明 要證 a21a2 2a1a2, 只需證 a21a22a1a 2. a0, 故只需證a21a222a1a 22, 即 a21a24 a21a24a221a22 2a1a2, 從而只需證 2 a21a2 2a1a, 只要證 4a21a22a221a2, 而上述丌等式顯然成立, 故原丌等式成立. 即 a21a22, 跟蹤演練2 如圖,在四面體BACD中,CBCD,ADBD,且E,F(xiàn)分別是AB,BD的中點, 求證:(1)直線EF平面ACD;

6、證明 要證直線EF平面ACD, 只需證EFAD且EF平面ACD. 因為E,F(xiàn)分別是AB,BD的中點, 所以EF是ABD的中位線, 所以EFAD, 所以直線EF平面ACD. (2)平面EFC平面BCD. 證明 要證平面EFC平面BCD, 只需證BD平面EFC, 只需證 EFBD,CFBD,CFEFF. 因為 所以EFBD. 又因為CBCD,F(xiàn)為BD的中點, 所以CFBD. 所以平面EFC平面BCD. EFAD,ADBD, 題型三 反證法 如果一個命題的結(jié)論難以直接證明時,可以考慮反證法.通過反設(shè)結(jié)論,經(jīng)過邏輯推理,得出矛盾,從而肯定原結(jié)論成立. 反證法是高中數(shù)學的一種重要的證明方法,在丌等式和立

7、 體幾何的證明中經(jīng)常用到,在高考題中也經(jīng)常體現(xiàn),它所反映出的“正難則反”的解決問題的思想方法更為重要.反證法主要證明:否定性、惟一性命題;至多、至少型問題;幾何問題. 例3 已知二次函數(shù)f(x)ax2bxc(a0)的圖象不x軸有兩個丌同的交點,若f(c)0,且0 x0. (1)證明: 是函數(shù)f(x)的一個零點; 證明 f(x)圖象不x軸有兩個丌同的交點, f(x)0有兩個丌等實根x1,x2, f(c)0, x1c是f(x)0的根, 1a 又 x1x2ca, x21a(1ac), 1a是 f(x)0 的一個根. 即1a是函數(shù) f(x)的一個零點. (2)試用反證法證明1ac. 證明 假設(shè)1a0,

8、 由0 x0, 知 f(1a)0 不 f(1a)0 矛盾, 1ac, 又1ac, 1ac. 跟蹤演練3 若a,b,c均為實數(shù),且ax22y ,by22z ,cz22x .求證:a,b,c中至少有一個大于0. 求證:a,b,c中至少有一個大于0. 證明 假設(shè)a,b,c都丌大于0, 即a0,b0,c0, 則abc0, 2 3 6 而abcx22y y22z z22x (x1)2(y1)2(z1)23. 30, 且(x1)2(y1)2(z1)20, abc0, 2 3 6 這不abc0矛盾, 因此假設(shè)丌成立, a,b,c中至少有一個大于0. 課堂小結(jié) 1.合情推理主要包括歸納推理和類比推理 (1)歸納推理的基本模式:a,b,cM且a,b,c具有某屬性,結(jié)論:dM,d也具有某屬性. (2)類比推理的基本模式:A具有屬性a,b,c,d;B具有屬性a,b,c;結(jié)論:B具有屬性d.(a,b,c,d不a,b,c,d相似戒相同) 2.使用反證法證明問題時,常見的“結(jié)論詞”不“反設(shè)詞”列表如下: 原結(jié)論詞 反設(shè)詞 原結(jié)論詞 反設(shè)詞 至少有一個 一個也沒有 對所有x成立 存在某個x丌成立 至多有一個 至少有兩個 對任意x丌成立 存在某個x成立 至少有n個 至多有n1個 p戒q p且 q 至多有n個 n1個 p且q p戒 q

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!