(課標專用 5年高考3年模擬A版)高考數(shù)學(xué) 專題八 立體幾何 3 直線、平面平行的判定與性質(zhì)試題 文-人教版高三數(shù)學(xué)試題
《(課標專用 5年高考3年模擬A版)高考數(shù)學(xué) 專題八 立體幾何 3 直線、平面平行的判定與性質(zhì)試題 文-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《(課標專用 5年高考3年模擬A版)高考數(shù)學(xué) 專題八 立體幾何 3 直線、平面平行的判定與性質(zhì)試題 文-人教版高三數(shù)學(xué)試題(27頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、直線、平面平行的判定與性質(zhì) 探考情 悟真題 【考情探究】 考點 內(nèi)容解讀 5年考情 預(yù)測熱度 考題示例 考向 關(guān)聯(lián)考點 直線、平面平行的判定與性質(zhì) ①了解直線與平面、平面與平面間的位置關(guān)系;②認識和理解空間中直線、平面平行的有關(guān)性質(zhì)和判定;③能運用公理、定理和已獲得的結(jié)論證明一些空間位置關(guān)系的簡單命題 2019課標全國Ⅱ,7,5分 面面平行的判定 充要條件 ★★★ 2019課標全國Ⅰ,19,12分 線面平行的判定, 點到平面的距離 線面垂直的判定 2017課標全國Ⅰ,6,5分 線面平行的判定 — 2016課標全國Ⅲ,19,12分 線面平行的判
2、定,三棱錐的體積 線線平行的判定,體積公式 分析解讀 從近幾年的高考試題來看,高考對本節(jié)內(nèi)容的考查比較平穩(wěn),一般通過對圖形或幾何體的認識,考查直線與平面平行以及平面與平面平行的判定和性質(zhì),題型以解答題為主,偶爾也會出現(xiàn)在小題之中,以命題判斷居多,難度適中,主要考查直線、平面平行間的轉(zhuǎn)化思想,同時也考查學(xué)生的空間想象能力以及邏輯推理能力,分值約為6分. 破考點 練考向 【考點集訓(xùn)】 考點 直線、平面平行的判定與性質(zhì) 1.(2020屆黑龍江哈三中9月月考,5)給出下列四種說法: ①若平面α∥β,直線a?α,b?β,則a∥b; ②若直線a∥b,直線a∥α,直線b∥β,則α∥
3、β; ③若平面α∥β,直線a?α,則a∥β; ④若直線a∥α,a∥β,則α∥β. 其中正確的個數(shù)為( ) A.4 B.3 C.2 D.1 答案 D 2.(2019豫北六校聯(lián)考,5)如圖,在四棱錐P-ABCD中,M,N分別為AC,PC上的兩點,且MN∥平面PAD,則( ) A.MN∥PD B.MN∥PA C.MN∥AD D.以上均有可能 答案 B 3.(2020屆貴州貴陽中學(xué)等六校9月聯(lián)考,8)如圖所示,正方體ABCD-A1B1C1D1的棱長為a,M,N分別為A1B和AC上的點,A1M=AN=23a,則MN與平面BB1C1C的位置關(guān)系是( ) A.斜交 B
4、.平行 C.垂直 D.不能確定 答案 B 4.如圖,在多面體ABC-DEFG中,平面ABC∥平面DEFG,EF∥DG,且AB=DE,DG=2EF,則( ) A.BF∥平面ACGD B.CF∥平面ABED C.BC∥FG D.平面ABED∥平面CGF 答案 A 5.如圖,四邊形ABCD是平行四邊形,點P是平面ABCD外的一點,M是PC的中點,在DM上取一點G,過G和AP作平面交平面BDM于GH,求證:AP∥GH. 證明 如圖,連接AC,設(shè)AC交BD于O,連接MO. ∵四邊形ABCD是平行四邊形, ∴O是AC的中點. 又M是PC的中點, ∴MO∥PA. 又
5、MO?平面BDM,PA?平面BDM, ∴PA∥平面BDM. 又經(jīng)過PA與點G的平面交平面BDM于GH, ∴AP∥GH. 6.(2020屆西南地區(qū)名師聯(lián)盟8月聯(lián)考,18)如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M為CE的中點. (1)求證:BM∥平面ADEF; (2)求證:平面BDE⊥平面BEC. 證明 (1)取DE的中點N,連接MN、AN, 在△EDC中,M、N分別為CE、DE的中點, ∴MN∥CD,且MN=12CD. 由已知得AB∥CD,AB=12CD, ∴MN∥AB,且MN=AB, ∴四邊形AB
6、MN為平行四邊形,∴BM∥AN, 又∵AN?平面ADEF,BM?平面ADEF,∴BM∥平面ADEF. (2)∵四邊形ADEF為正方形,∴ED⊥AD. 又∵平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD, ED?平面ADEF,∴ED⊥平面ABCD,∴ED⊥BC. 在直角梯形ABCD中,由AB=AD=2,CD=4,AD⊥DC,可得BC=22. 在△BCD中,BD=BC=22,CD=4,∴BD2+BC2=CD2, ∴BC⊥BD,又ED∩BD=D,∴BC⊥平面BDE, 又∵BC?平面BCE,∴平面BDE⊥平面BEC. 7.(2019河北邯鄲調(diào)研,18)如圖,在四棱錐S
7、-ABCD中,側(cè)棱SA⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,AB⊥AD,且SA=AB=BC=2,AD=1,M是棱SB的中點. (1)求證:AM∥平面SCD; (2)求三棱錐B-MAC的體積. 答案 (1)證明:取SC的中點N,連接MN,ND. ∵M,N分別是SB,SC的中點,∴MN∥BC,且MN=12BC. ∵AD∥BC,且AD=12BC,∴MN∥AD且MN=AD. ∴四邊形AMND為平行四邊形,∴AM∥ND. 又AM?平面SCD,ND?平面SCD,∴AM∥平面SCD. (2)∵SA⊥底面ABCD,∴SA⊥BC,又BC⊥AB,SA∩AB=A, ∴BC⊥平
8、面SAB, ∴VB-MAC=VC-MAB=13·S△MAB·BC=13×12×(2)2×2=23. 煉技法 提能力 【方法集訓(xùn)】 方法1 證明線面平行的方法 1.(2020屆皖南八校第一次聯(lián)考,19)在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是矩形,E,F,G分別是棱BC,AD,PA的中點. (1)求證:PE∥平面BFG; (2)若PD=AD=1,AB=2,求點C到平面BFG的距離. 答案 (1)證明:連接DE. ∵在矩形ABCD中,E,F分別是BC,AD的中點, ∴DF=BE,DF∥BE, ∴四邊形BEDF是平行四邊形,∴DE∥BF.(2分) ∵G
9、是PA的中點,∴FG∥PD.(3分) ∵PD,DE?平面BFG,FG,BF?平面BFG, ∴PD∥平面BFG,DE∥平面BFG.(4分) ∵PD∩DE=D,∴平面PDE∥平面BFG.(5分) ∵PE?平面PDE,∴PE∥平面BFG.(6分) (2)解法一:∵PD⊥平面ABCD,FG∥PD,∴FG⊥平面ABCD. 在平面ABCD內(nèi),過C作CM⊥BF,垂足為M,則FG⊥CM. ∵FG∩BF=F,∴CM⊥平面BFG, ∴CM的長是點C到平面BFG的距離.(8分) 在矩形ABCD中,F是AD的中點,AD=1,AB=2,易證△BCM∽△FBA, ∴CMBA=BCFB.(10分)
10、 ∵FB=AB2+AF2=172,BC=AD=1,∴CM=41717,即點C到平面BFG的距離為41717.(12分) 解法二:連接CF,設(shè)C到平面BFG的距離為d, 在矩形ABCD中,AF=12AD=12,AB=2, ∴BF=14+4=172.(8分) ∵PD⊥平面ABCD,BF?平面ABCD,∴PD⊥BF, ∵FG∥PD,∴FG⊥BF,又知FG=12PD=12,∴△BFG的面積為12BF·FG=178.(10分) ∵△BCF的面積為12BC·AB=1,VC-BFG=VG-BCF, ∴13×178d=13×1×12,∴d=41717,即點C到平面BFG的距離為41717.(12
11、分) 2.(2019河南安陽三模,18)如圖所示,四棱錐A-BCDE中,BE∥CD,BE⊥平面ABC,CD=32BE,點F在線段AD上. (1)若AF=2FD,求證:EF∥平面ABC; (2)若△ABC為等邊三角形,CD=AC=3,求四棱錐A-BCDE的體積. 答案 (1)證明:取線段AC上靠近C的三等分點G,連接BG,GF. 因為AGAC=AFAD=23,所以GF∥CD,GF=23CD=BE.(2分) 又BE∥CD,故GF∥BE.(3分) 故四邊形BGFE為平行四邊形,故EF∥BG.(4分) 因為EF?平面ABC,BG?平面ABC,故EF∥平面ABC.(6分) (2
12、)因為BE⊥平面ABC,BE?平面BCDE, 所以平面ABC⊥平面BCDE.(8分) 所以四棱錐A-BCDE的高即為△ABC中BC邊上的高.(9分) 易求得BC邊上的高為32×3=332. 故四棱錐A-BCDE的體積V=13×12×(2+3)×3×332=1534.(12分) 方法2 證明面面平行的方法 1.(2020屆四川成都9月摸底考試,19)如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA=PD,AB=AD,PA⊥PD,AD⊥CD,∠BAD=60°,M、N分別為AD、PA的中點. (1)證明:平面BMN∥平面PCD; (2)若AD=6,求三棱錐P-BMN的
13、體積. 答案 (1)證明:連接BD. ∵AB=AD,∠BAD=60°, ∴△ABD為正三角形. ∵M為AD的中點,∴BM⊥AD. ∵AD⊥CD,CD,BM?平面ABCD,∴BM∥CD.(1分) 又BM?平面PCD,CD?平面PCD, ∴BM∥平面PCD.(2分) ∵M,N分別為AD,PA的中點,∴MN∥PD. 又MN?平面PCD,PD?平面PCD, ∴MN∥平面PCD.(3分) 又BM,MN?平面BMN,BM∩MN=M,(5分) ∴平面BMN∥平面PCD.(6分) (2)在(1)中已證BM⊥AD, ∵平面PAD⊥平面ABCD,BM?平面ABCD, ∴BM⊥
14、平面PAD,(7分) ∵AB=AD=6,∠BAD=60°,∴BM=33.(8分) ∵M,N分別為AD,PA的中點,PA=PD=22AD=32, ∴S△PMN=14S△PAD=14×12×(32)2=94.(10分) ∴三棱錐P-BMN的體積VP-BMN=VB-PMN=13S△PMN·BM=13×94×33=934.(12分) 2.(2018吉林長春質(zhì)量監(jiān)測,19)如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.設(shè)M,N分別為PD,AD的中點. (1)求證:平面CMN∥平面PAB; (2)求三棱錐P-AB
15、M的體積. 答案 (1)證明:∵M,N分別為PD,AD的中點, ∴MN∥PA,又MN?平面PAB,PA?平面PAB, ∴MN∥平面PAB. 在Rt△ACD中,∠CAD=60°,∠ACD=90°,易知CN=AN, ∴∠ACN=60°. 又∠BAC=60°,∴CN∥AB. ∵CN?平面PAB,AB?平面PAB, ∴CN∥平面PAB. 又CN∩MN=N,∴平面CMN∥平面PAB. (2)由(1)知,平面CMN∥平面PAB, ∴點M到平面PAB的距離等于點C到平面PAB的距離, ∵∠ABC=90°,∴CB⊥AB. ∵PA⊥平面ABCD, ∴PA⊥BC, ∴BC⊥平面P
16、AB. ∵AB=1,∠ABC=90°,∠BAC=60°,∴BC=3, ∴三棱錐P-ABM的體積V=VM-PAB=VC-PAB=13×12×1×2×3=33. 【五年高考】 A組 統(tǒng)一命題·課標卷題組 考點 直線、平面平行的判定與性質(zhì) 1.(2019課標全國Ⅱ,7,5分)設(shè)α,β為兩個平面,則α∥β的充要條件是( ) A.α內(nèi)有無數(shù)條直線與β平行 B.α內(nèi)有兩條相交直線與β平行 C.α,β平行于同一條直線 D.α,β垂直于同一平面 答案 B 2.(2017課標全國Ⅰ,6,5分)如圖,在下列四個正方體中,A,B為正方體的兩個頂點,M,N,Q為所在棱的中點,則在這四個
17、正方體中,直線AB與平面MNQ不平行的是( ) 答案 A 3.(2019課標全國Ⅰ,19,12分)如圖,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點. (1)證明:MN∥平面C1DE; (2)求點C到平面C1DE的距離. 答案 本題考查了線面平行、垂直的判定和點到平面的距離,通過平行、垂直的證明,考查了學(xué)生的空間想象力,體現(xiàn)了直觀想象的核心素養(yǎng). (1)證明:連接B1C,ME.因為M,E分別為BB1,BC的中點,所以ME∥B1C,且ME=12B1C.又因為N為A1D的中點,所以ND=1
18、2A1D. 由題設(shè)知A1B1DC,可得B1CA1D,故MEND,因此四邊形MNDE為平行四邊形,MN∥ED. 又MN?平面C1DE,所以MN∥平面C1DE. (2)過C作C1E的垂線,垂足為H. 由已知可得DE⊥BC,DE⊥C1C, 所以DE⊥平面C1CE, 故DE⊥CH. 從而CH⊥平面C1DE, 故CH的長即為C到平面C1DE的距離. 由已知可得CE=1,C1C=4, 所以C1E=17, 故CH=41717. 從而點C到平面C1DE的距離為41717. 4.(2016課標全國Ⅲ,19,12分)如圖,四
19、棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點. (1)證明MN∥平面PAB; (2)求四面體NBCM的體積. 答案 (1)證明:由已知得AM=23AD=2, 取BP的中點T,連接AT,TN,由N為PC的中點知TN∥BC,TN=12BC=2.(3分) 又AD∥BC,故TNAM,故四邊形AMNT為平行四邊形,于是MN∥AT. 因為AT?平面PAB,MN?平面PAB,所以MN∥平面PAB.(6分) (2)因為PA⊥平面ABCD,N為PC的中點,所以N到平面ABCD的
20、距離為12PA.(9分) 取BC的中點E,連接AE. 由AB=AC=3得AE⊥BC,AE=AB2-BE2=5. 由AM∥BC得M到BC的距離為5, 故S△BCM=12×4×5=25. 所以四面體NBCM的體積VNBCM=13·S△BCM·PA2=453.(12分) B組 自主命題·省(區(qū)、市)卷題組 考點 直線、平面平行的判定與性質(zhì) 1.(2019江蘇,16,14分)如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點,AB=BC. 求證:(1)A1B1∥平面DEC1; (2)BE⊥C1E. 證明 本題主要考查直線與直線、直線與平面、平面與平面的位
21、置關(guān)系等基礎(chǔ)知識,考查空間想象能力和推理論證能力. (1)因為D,E分別為BC,AC的中點,所以ED∥AB. 在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED. 又因為ED?平面DEC1,A1B1?平面DEC1, 所以A1B1∥平面DEC1. (2)因為AB=BC,E為AC的中點, 所以BE⊥AC. 因為三棱柱ABC-A1B1C1是直棱柱, 所以C1C⊥平面ABC. 又因為BE?平面ABC,所以C1C⊥BE. 因為C1C?平面A1ACC1,AC?平面A1ACC1,C1C∩AC=C, 所以BE⊥平面A1ACC1. 因為C1E?平面A1ACC1, 所以
22、BE⊥C1E. 2.(2017浙江,19,15分)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點. (1)證明:CE∥平面PAB; (2)求直線CE與平面PBC所成角的正弦值. 答案 (1)證明:如圖,設(shè)PA中點為F,連接EF,FB.因為E,F分別為PD,PA中點,所以EF∥AD且EF=12AD. 又因為BC∥AD,BC=12AD,所以EF∥BC且EF=BC, 即四邊形BCEF為平行四邊形,所以CE∥BF, 因為CE?平面PAB,BF?平面PAB, 因此CE∥平面PAB. (2)
23、分別取BC,AD的中點M,N. 連接PN交EF于點Q,連接MQ. 因為E,F,N分別是PD,PA,AD的中點,所以Q為EF的中點, 在平行四邊形BCEF中,MQ∥CE. 由△PAD為等腰直角三角形得PN⊥AD. 由DC⊥AD,N是AD的中點得BN⊥AD. 因為PN∩BN=N, 所以AD⊥平面PBN, 由BC∥AD得BC⊥平面PBN, 因為BC?平面PBC, 所以平面PBC⊥平面PBN. 過點Q作PB的垂線,垂足為H,連接MH. MH是MQ在平面PBC上的射影,所以∠QMH是直線CE與平面PBC所成的角.設(shè)CD=1. 在△PCD中,由PC=2,CD=1,PD=2得CE=
24、2, 在△PBN中,由PN=BN=1,PB=3得QH=14, 在Rt△MQH中,QH=14,MQ=2, 所以sin∠QMH=28. 所以,直線CE與平面PBC所成角的正弦值是28. 3.(2016四川,17,12分)如圖,在四棱錐P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12AD. (1)在平面PAD內(nèi)找一點M,使得直線CM∥平面PAB,并說明理由; (2)證明:平面PAB⊥平面PBD. 答案 (1)取棱AD的中點M(M∈平面PAD),點M即為所求的一個點.理由如下: 連接CM.因為AD∥BC,BC=12AD, 所以BC∥AM,且B
25、C=AM. 所以四邊形AMCB是平行四邊形,從而CM∥AB. 又AB?平面PAB,CM?平面PAB,所以CM∥平面PAB. (說明:取棱PD的中點N,則所找的點可以是直線MN上任意一點) (2)證明:連接BM,由已知,PA⊥AB,PA⊥CD, 因為AD∥BC,BC=12AD, 所以直線AB與CD相交, 所以PA⊥平面ABCD. 因為BD?平面ABCD,所以PA⊥BD. 因為AD∥BC,BC=12AD, 所以BC∥MD,且BC=MD. 所以四邊形BCDM是平行四邊形. 又BC=CD,所以四邊形BCDM為菱形, 所以MC⊥BD, 由(1)知MC∥AB, 所以BD⊥
26、AB. 又AB∩AP=A,所以BD⊥平面PAB. 又BD?平面PBD, 所以平面PAB⊥平面PBD. 4.(2015山東,18,12分)如圖,三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點. (1)求證:BD∥平面FGH; (2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH. 證明 (1)證法一:連接DG,CD,設(shè)CD∩GF=M,連接MH. 在三棱臺DEF-ABC中, AB=2DE,G為AC的中點, 可得DF∥GC,DF=GC, 所以四邊形DFCG為平行四邊形. 則M為CD的中點,又H為BC的中點, 所以HM∥BD, 又HM?平
27、面FGH,BD?平面FGH, 所以BD∥平面FGH. 證法二:在三棱臺DEF-ABC中, 由BC=2EF,H為BC的中點, 可得BH∥EF,BH=EF, 所以四邊形HBEF為平行四邊形, 可得BE∥HF. 在△ABC中,G為AC的中點,H為BC的中點, 所以GH∥AB. 又GH∩HF=H,AB∩BE=B, 所以平面FGH∥平面ABED. 因為BD?平面ABED, 所以BD∥平面FGH. (2)連接HE. 因為G,H分別為AC,BC的中點, 所以GH∥AB. 由AB⊥BC,得GH⊥BC. 又H為BC的中點, 所以EF∥HC,EF=HC, 因此四邊形EFC
28、H是平行四邊形. 所以CF∥HE, 又CF⊥BC,所以HE⊥BC. 又HE,GH?平面EGH,HE∩GH=H, 所以BC⊥平面EGH. 又BC?平面BCD, 所以平面BCD⊥平面EGH. C組 教師專用題組 考點 直線、平面平行的判定與性質(zhì) 1.(2016山東,18,12分)在如圖所示的幾何體中,D是AC的中點,EF∥DB. (1)已知AB=BC,AE=EC,求證:AC⊥FB; (2)已知G,H分別是EC和FB的中點.求證:GH∥平面ABC. 證明 (1)因為EF∥DB, 所以EF與DB確定平面BDEF. 連接DE. 因為AE=EC,D為AC的中點
29、, 所以DE⊥AC. 同理可得BD⊥AC. 又BD∩DE=D, 所以AC⊥平面BDEF, 因為FB?平面BDEF, 所以AC⊥FB. (2)設(shè)FC的中點為I.連接GI,HI. 在△CEF中,因為G是CE的中點, 所以GI∥EF.又EF∥DB, 所以GI∥DB. 在△CFB中,因為H是FB的中點, 所以HI∥BC. 又HI∩GI=I, 所以平面GHI∥平面ABC. 因為GH?平面GHI,所以GH∥平面ABC. 2.(2015北京,18,14分)如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=2,O,M分別為
30、AB,VA的中點. (1)求證:VB∥平面MOC; (2)求證:平面MOC⊥平面VAB; (3)求三棱錐V-ABC的體積. 答案 (1)證明:因為O,M分別為AB,VA的中點, 所以O(shè)M∥VB. 又因為VB?平面MOC, 所以VB∥平面MOC. (2)證明:因為AC=BC,O為AB的中點,所以O(shè)C⊥AB. 又因為平面VAB⊥平面ABC,且OC?平面ABC, 所以O(shè)C⊥平面VAB. 所以平面MOC⊥平面VAB. (3)在等腰直角三角形ACB中,AC=BC=2, 所以AB=2,OC=1. 所以等邊三角形VAB的面積S△VAB=3. 又因為OC⊥平面VAB, 所以
31、三棱錐C-VAB的體積等于13OC·S△VAB=33. 又因為三棱錐V-ABC的體積與三棱錐C-VAB的體積相等, 所以三棱錐V-ABC的體積為33. 3.(2015天津,17,13分)如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,點E和F分別為BC和A1C的中點. (1)求證:EF∥平面A1B1BA; (2)求證:平面AEA1⊥平面BCB1. 證明 (1)如圖,連接A1B.在△A1BC中,因為E和F分別是BC和A1C的中點,所以EF∥BA1.又因為EF?平面A1B1BA,所以EF∥平面A1B1BA. (2)因為AB=
32、AC,E為BC的中點,所以AE⊥BC.因為AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,從而BB1⊥AE.又因為BC∩BB1=B,所以AE⊥平面BCB1,又因為AE?平面AEA1,所以平面AEA1⊥平面BCB1. 4.(2015廣東,18,14分)如圖,三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3. (1)證明:BC∥平面PDA; (2)證明:BC⊥PD; (3)求點C到平面PDA的距離. 答案 (1)證明:因為四邊形ABCD是長方形, 所以AD∥BC. 又因為AD?平面PDA,BC?平面PDA,所以BC∥平面PDA.
33、 (2)證明:取CD的中點,記為E,連接PE,因為PD=PC,所以PE⊥DC. 又因為平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,PE?平面PDC,所以PE⊥平面ABCD. 又BC?平面ABCD,所以PE⊥BC. 因為四邊形ABCD為長方形,所以BC⊥DC. 又因為PE∩DC=E,所以BC⊥平面PDC. 而PD?平面PDC,所以BC⊥PD. (3)連接AC.由(2)知,BC⊥PD,又因為AD∥BC,所以AD⊥PD,所以S△PDA=12AD·PD=12×3×4=6. 在Rt△PDE中,PE=PD2-DE2=42-32=7. S△ADC=12AD·DC=12×3×6
34、=9. 由(2)知,PE⊥平面ABCD,則PE為三棱錐P-ADC的高. 設(shè)點C到平面PDA的距離為d, 由VC-PDA=VP-ADC,即13d·S△PDA=13PE·S△ADC,亦即13×6d=13×7×9,得d=372. 故點C到平面PDA的距離為372. 5.(2014課標Ⅱ,18,12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點. (1)證明:PB∥平面AEC; (2)設(shè)AP=1,AD=3,三棱錐P-ABD的體積V=34,求A到平面PBC的距離. 解析 (1)證明:設(shè)BD與AC的交點為O,連接EO. 因為ABCD為矩形,
35、 所以O(shè)為BD的中點. 又E為PD的中點, 所以EO∥PB. EO?平面AEC,PB?平面AEC, 所以PB∥平面AEC. (2)V=16PA·AB·AD=36AB. 又V=34, 所以AB=32, 所以PB=AB2+PA2=132. 作AH⊥PB交PB于H. 由題設(shè)知BC⊥平面PAB, 因為AH?平面PAB, 所以BC⊥AH, 又BC∩BP=B, 故AH⊥平面PBC. 又AH=PA·ABPB=31313, 所以A到平面PBC的距離為31313. 6.(2014四川,18,12分)在如圖所示的多面體中,四邊形ABB1A1和ACC1A1都為矩形. (1)
36、若AC⊥BC,證明:直線BC⊥平面ACC1A1; (2)設(shè)D,E分別是線段BC,CC1的中點,在線段AB上是否存在一點M,使直線DE∥平面A1MC?請證明你的結(jié)論. 答案 (1)證明:因為四邊形ABB1A1和ACC1A1都是矩形, 所以AA1⊥AB,AA1⊥AC. 因為AB,AC為平面ABC內(nèi)兩條相交直線, 所以AA1⊥平面ABC. 因為直線BC?平面ABC,所以AA1⊥BC. 又AC⊥BC,AA1,AC為平面ACC1A1內(nèi)兩條相交直線, 所以BC⊥平面ACC1A1. (2)存在.證明如下:取線段AB的中點M,連接A1M,MC,A1C,AC1,設(shè)O為A1C,AC1的交點.
37、 由已知可知O為AC1的中點. 連接MD,OE,則MD,OE分別為△ABC,△ACC1的中位線, 所以MD∥AC且MD=12AC,OE∥AC且OE=12AC,因此MDOE. 連接OM,從而四邊形MDEO為平行四邊形,則DE∥MO. 因為直線DE?平面A1MC,MO?平面A1MC, 所以直線DE∥平面A1MC,即線段AB上存在一點M(線段AB的中點),使直線DE∥平面A1MC. 【三年模擬】 時間:60分鐘 分值:80分 一、選擇題(每小題5分,共20分) 1.(2020屆甘肅武威調(diào)研,5)已知α,β是兩個不重合的平面,下列選項中,一定
38、能得出平面α與平面β平行的是( ) A.α內(nèi)有兩條直線與β平行B.直線a∥α,a∥β C.直線a,b滿足a∥b,a∥α,b∥βD.異面直線a,b滿足a?α,b?β,且a∥β,b∥α 答案 D 2.(2020屆黑龍江頂級名校9月聯(lián)考,8)如圖,四棱錐S-ABCD的所有棱長均為2,E是SA的中點,過C、D、E三點的平面與SB交于點F,則四邊形DEFC的周長為( ) A.2+3 B.3+3 C.3+23 D.2+23 答案 C 3.(2019江西吉安一模,11)如圖,在棱長為1的正方體ABCD-A1B1C1D1中,M,N分別是A1D1
39、,A1B1的中點,過直線BD的平面α∥平面AMN,則平面α截該正方體所得截面的面積為( ) A.2 B.98 C.3 D.62 答案 B 4.(2018湖南長沙長郡中學(xué)調(diào)研考試,11)如圖,在四棱錐P-ABCD中,AB⊥AD,BC∥AD,PA=AD=4,AB=BC=2,PA⊥平面ABCD,點E是線段AB的中點,點F在線段PA上,且EF∥平面PCD,直線PD與平面CEF交于點H,則線段CH的長度為( ) A.2 B.2 C.22 D.23 答案 C 二、填空題(每小題5分,共10分) 5.(2019福建廈門一模,15)在正三棱錐S-ABC中,AB=23,SA=2
40、5,E,F分別為AC,SB的中點.平面α過點A,平面α∥平面SBC,平面α∩平面ABC=l,則異面直線l和EF所成角的余弦值為 .? 答案 64 6.(2020屆安徽合肥一中等六校第一次聯(lián)考,16)如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點M是AD的中點,動點P在底面ABCD內(nèi)(不包括邊界),若B1P∥平面A1BM,則C1P的最小值是 .? 答案 305 三、解答題(共50分) 7.(2020屆百師聯(lián)盟開學(xué)摸底考試,18)如圖,三角形DCF所在平面垂直于四邊形ABCD所在平面,AB=AD=FC=2,BC=5,∠ADC=∠DAB=∠FCD=90°,N,
41、P分別為AF,BC的中點. (1)證明:PN∥平面FDC; (2)求棱錐A-BDF的高. 答案 (1)證明:取AD的中點M,連接PM,MN. 因為P,N,M分別為BC,AF,AD的中點, 所以MN∥FD,PM∥CD,(1分) 又知MN?平面FDC,FD?平面FDC,所以MN∥平面FDC, 同理PM∥平面FDC,又PM∩MN=M, 所以平面PMN∥平面FDC,(3分) 又PN?平面PMN, 所以PN∥平面FDC.(5分) (2)由已知得四邊形ABCD是直角梯形,計算得CD=3,(6分) 因為平面FCD⊥平面ABCD,∠FCD=90°, 所以FC⊥平面ABCD.
42、 則VA-BDF=VF-ABD=13×12×AB·AD·FC=13×12×2×2×2=43.(8分) 設(shè)棱錐A-BDF的高為h, 由已知得FD=FC2+CD2=13,BD=AD2+AB2=22, 由FC⊥平面ABCD得FC⊥BC,所以FB=BC2+CF2=3,所以cos∠DBF=BD2+FB2-FD22·BD·FB=26. 所以sin∠DBF=1-262=346, 所以S△BDF=12BD·FB·sin∠DBF=12×22×3×346=17.(10分) 由VA-BDF=13×S△BDF×h=13×17×h=43, 得h=41717. 所以棱錐A-BDF的高為41717.(12分
43、) 8.(2019河南洛陽第二次統(tǒng)考,18)如圖,已知平面多邊形PABCD中,AP=PD,AD=2DC=2CB=4,AD∥BC,AP⊥PD,AD⊥DC,E為PD的中點,現(xiàn)將三角形APD沿AD折起,使PC=22. (1)證明:CE∥平面PAB; (2)求三棱錐P-BCE的體積. 答案 (1)證明:如圖,取PA的中點H,連接HE,HB. ∵E為PD的中點,∴HE為△PAD的中位線, ∴HE∥AD且HE=12AD.(2分) 又BC∥AD且BC=12AD,∴HEBC, ∴四邊形BCEH為平行四邊形, ∴CE∥BH,(3分) ∵BH?平面ABP,CE?平面AB
44、P, ∴CE∥平面ABP.(5分) (2)由題意知△PAD為等腰直角三角形,四邊形ABCD為直角梯形, 取AD的中點F,連接BF,PF,∵AD=2BC=4,∴PF=BF=2, ∵PF⊥AD,BF⊥AD,PF∩BF=F,∴DF⊥平面PBF, ∴BC⊥平面PBF,∵PB?平面PBF,∴BC⊥PB.(7分) ∵在直角三角形PBC中,PC=22,BC=2,∴PB=2, ∴△PBF為等邊三角形.(8分) 取BF的中點O,連接PO,則PO⊥BF,由DF⊥平面PBF知PO⊥DF,又DF∩BF=F, ∴PO⊥平面ABCD,在等邊△PBF中,可求得PO=3,(9分) ∵E為PD的中點,
45、 ∴E到平面PBC的距離等于D到平面PBC的距離的一半, 連接BD,則VP-BCE=VE-PBC=12VD-PBC=12VP-BCD=12×13·S△BCD·PO=12×13×12×2×2×3=33.(12分) 9.(2020屆山西長治二中9月月考,18)如圖,在多面體ABCDEF中,平面ADEF⊥平面ABCD,四邊形ADEF為正方形,四邊形ABCD為梯形,且AD∥BC,∠BAD=90°,AB=AD=12BC. (1)求證:AD∥平面BCEF; (2)求證:BD⊥平面CDE; (3)在線段BD上是否存在點M,使得CE∥平面AMF?若存在,求出BMDM的值;若不存在,請說明理由.
46、 答案 (1)證明:因為四邊形ADEF為正方形,所以AD∥EF, 由于EF?平面BCEF,AD?平面BCEF, 所以AD∥平面BCEF. (2)證明:因為四邊形ADEF為正方形,所以DE⊥AD. 因為平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD, 所以DE⊥平面ABCD,所以DE⊥BD. 取BC的中點N,連接DN. 由BN∥AD,BN=12BC=AD=AB,∠BAD=90°, 可得四邊形ABND為正方形,所以DN=AB. 所以DN=12BC,所以BD⊥CD, 因為CD∩DE=D,所以BD⊥平面CDE. (3)存在,當M為BD的中點時,CE∥平面AMF,
47、此時BMDM=1. 理由如下: 連接AN交BD于點M,連接NF,由于四邊形ABND為正方形, 所以M是BD的中點,同時也是AN的中點. 因為NC=AD,NC∥AD,四邊形ADEF為正方形, 所以NC=FE,NC∥FE, 所以四邊形NCEF為平行四邊形,所以CE∥NF. 又因為NF?平面AMF,CE?平面AMF, 所以CE∥平面AMF. 10.(2018河南六市三模,18)已知空間幾何體ABCDE中,△BCD與△CDE均是邊長為2的等邊三角形,△ABC是腰長為3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD. (1)試在平面BCD內(nèi)作一條直線,使得直線上任意一點
48、F與E的連線EF均與平面ABC平行,并給出證明; (2)求三棱錐E-ABC的體積. 答案 (1)如圖所示,取DC的中點N,取BD的中點M,連接MN,則MN即為所求. 證明:連接EM,EN,取BC的中點H,連接AH, ∵△ABC是腰長為3的等腰三角形,BC=2,H為BC的中點, ∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH?平面ABC, ∴AH⊥平面BCD,同理可證EN⊥平面BCD, ∴EN∥AH, ∵EN?平面ABC,AH?平面ABC, ∴EN∥平面ABC. 又M,N分別為BD,DC的中點, ∴MN∥BC, ∵MN?平面ABC,BC?平
49、面ABC, ∴MN∥平面ABC. 又MN∩EN=N,MN?平面EMN,EN?平面EMN, ∴平面EMN∥平面ABC, 又EF?平面EMN, ∴EF∥平面ABC, 即直線MN上任意一點F與E的連線EF均與平面ABC平行. (2)連接DH,取CH的中點G,連接NG,則NG∥DH, 由(1)可知EN∥平面ABC, ∴點E到平面ABC的距離與點N到平面ABC的距離相等, 又△BCD是邊長為2的等邊三角形, ∴DH⊥BC, 又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH?平面BCD, ∴DH⊥平面ABC, ∴NG⊥平面ABC, 易知DH=3, ∴NG=32, 又S△ABC=12·BC·AH=12×2×32-12=22, ∴VE-ABC=13·S△ABC·NG=63.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。