離散型隨機變量的均值 課件.ppt

上傳人:小** 文檔編號:23831729 上傳時間:2021-06-11 格式:PPT 頁數(shù):33 大?。?52KB
收藏 版權申訴 舉報 下載
離散型隨機變量的均值 課件.ppt_第1頁
第1頁 / 共33頁
離散型隨機變量的均值 課件.ppt_第2頁
第2頁 / 共33頁
離散型隨機變量的均值 課件.ppt_第3頁
第3頁 / 共33頁

下載文檔到電腦,查找使用更方便

5 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《離散型隨機變量的均值 課件.ppt》由會員分享,可在線閱讀,更多相關《離散型隨機變量的均值 課件.ppt(33頁珍藏版)》請在裝配圖網上搜索。

1、2.3.1 離 散 型 隨 機 變量 的 均 值 1、 離 散 型 隨 機 變 量 的 分 布 列 XP 1x ix2x 1p 2p ip 2、 離 散 型 隨 機 變 量 分 布 列 的 性 質 :(1)pi0, i 1, 2, ;(2)p1 p2 pi 1 引 入 對 于 離 散 型 隨 機 變 量 , 可 以 由 它 的 概 率 分布 列 確 定 與 該 隨 機 變 量 相 關 事 件 的 概 率 。 但 在實 際 問 題 中 , 有 時 我 們 更 感 興 趣 的 是 隨 機 變 量的 某 些 數(shù) 字 特 征 。 例 如 , 要 了 解 某 班 同 學 在 一次 數(shù) 學 測 驗 中 的

2、 總 體 水 平 , 很 重 要 的 是 看 平 均分 ; 要 了 解 某 班 同 學 數(shù) 學 成 績 是 否 “ 兩 極 分 化 ”則 需 要 考 察 這 個 班 數(shù) 學 成 績 的 方 差 。 我 們 還 常 常 希 望 直 接 通 過 數(shù) 字 來 反 映 隨 機 變量 的 某 個 方 面 的 特 征 , 最 常 用 的 有 期 望 與 方 差 . 問 題 : 某 人 射 擊 10次 , 所 得 環(huán) 數(shù) 分 別 是 : 1, 1,1, 1, 2, 2, 2, 3, 3, 4; 則 所 得 的 平 均 環(huán) 數(shù)是 多 少 ? 210 4332221111 X把 環(huán) 數(shù) 看 成 隨 機 變 量

3、的 概 率 分 布 列 :X 1 2 3 4P 104 103 102 101 21014102310321041 X 權 數(shù) 加權平均 按 3: 2: 1的 比 例 混 合 18元 /kg 混 合 糖 果 中 每 一 粒 糖 果 的 質 量 都相 等24元 /kg 36元 /kg 定 價 為 混 合 糖 果 的 平 均 價 格 才 合 理 按 3: 2: 1的 比 例 混 合 18元 /kg 24元 /kg 36元 /kg m千 克 混 合 糖 果 的 總 價 格 為18 + 24 + 36 36 m 26 m 16 m平 均 價 格 為 3 2 118 24 366 6 63 2 118

4、366 6 6m m mm 元 3 kg 按 3: 2: 1的 比 例 混 合 18元 /kg 24元 /kg 36元 /kg 把 3種 糖 果 的 價 格 看 成 隨 機 變 量 的 概 率 分 布 列 :X 18 24 36P 63 62 613 2 118 24 36 23( / )6 6 6X kg 元18 ( 18) 24 ( 24)36 ( 36) 23( / ) X P X P XP X kg 元 離 散 型 隨 機 變 量 取 值 的 平 均 值一 般 地 , 若 離 散 型 隨 機 變 量 X的 概 率 分 布 為 : nnii pxpxpxpxEX 2211則 稱為 隨 機

5、 變 量 X的 均 值 或 數(shù) 學 期 望 。 它 反 映 了 離散 型 隨 機 變 量 取 值 的 平 均 水 平 。P 1x ix2x 1p 2p ip nxnpX 隨 機 變 量 X的 均值 與 X可 能 取 值的 算 術 平 均 數(shù) 相同 嗎X的 分 布 列 3 2 118 24 36 236 6 6EX 18 24 36 263 可 能 取 值 的 算 術 平 均 數(shù) 為XX 18 24 36P 612636 隨 機 變 量 x的 均 值 與x可 能 取 值 的 算 術 平均 數(shù) 何 時 相 等 舉 例 隨 機 拋 擲 一 個 骰 子 , 求 所 得 骰 子 的 點 數(shù) X的 均 值

6、 。 x 1 2 3 4 5 6P 61 61 61 61 61 611 1 1 71 2 . 66 6 6 2EX 1 2 6 7 6 2. X可 能 取 值 的 算 術 平 均 數(shù) 為 隨 機 變 量 的 均 值 與 樣 本 的平 均 值 有 何 區(qū) 別 和 聯(lián) 系隨 機 變 量 的 均 值 是 常 數(shù) , 而 樣 本 的 平 均 值 隨 著 樣 本 的 不 同 而 變 化 , 因 而 樣 本 的 平 均 值 是 隨 機 變 量 ;對 于 簡 單 隨 機 樣 本 , 隨 著 樣 本 容 量 的 增 加 , 樣 本 的 平 均 值 越 來 越 接 近 總 體 的 平 均 值 , 因 此 ,

7、我 們 常 用 樣 本 的 平 均 值 來 估 計 總 體 的 平 均 值 。 設 Y aX b, 其 中 a, b為 常 數(shù) , 則 Y也 是隨 機 變 量 ( 1) Y的 分 布 列 是 什 么 ?( 2) EY=?思 考 :P 1x ix2x 1p 2p ip nxnpX nnii pxpxpxpxEX 2211 P 1x ix2x 1p 2p ip nxnpXP 1x ix2x 1p 2p ip nxnpXY bax 1 baxi bax 2 baxn nn pbaxpbaxpbaxEY )()()( 2211 )()( 212211 nnn pppbpxpxpxa baEX 一 、

8、離 散 型 隨 機 變 量 取 值 的 平 均 值 nnii pxpxpxpxEX 2211P 1x ix2x 1p 2p ip nxnpX二 、 數(shù) 學 期 望 的 性 質 baEXbaXE )( 1、 隨 機 變 量 的 分 布 列 是 1 3 5P 0.5 0.3 0.2(1)則 E= . 2、 隨 機 變 量 的 分 布 列 是2.4(2)若 =2+1, 則 E= . 5.8 4 7 9 10P 0.3 a b 0.2E=7.5,則 a= b= .0.40.1 例 1.籃 球 運 動 員 在 比 賽 中 每 次 罰 球 命 中 得 1分 ,罰 不 中 得 0分 已 知 某 運 動 員

9、罰 球 命 中 的 概 率 為0.7, 則 他 罰 球 1次 的 得 分 X的 均 值 是 多 少 ?X=1或 X=0 P(X=1)=0.7X 1 0P 0.7 0.31 0.7 0 0.3 0.7EX 一 般 地 , 如 果 隨 機 變量 X服 從 兩 點 分 布 ,那 么 EX=?1 0 (1 )EX p p p 一 般 地 , 如 果 隨 機 變 量 X服 從 兩 點 分 布 ,X 1 0P p 1 p則 pppEX )1(01小 結 : 例 2.籃 球 運 動 員 在 比 賽 中 每 次 罰 球 命 中 得 1分 ,罰 不 中 得 0分 已 知 某 運 動 員 罰 球 命 中 的 概

10、率 為0.7, 他 連 續(xù) 罰 球 3次 ;( 1) 求 他 得 到 的 分 數(shù) X的 分 布 列 ;( 2) 求 X的 期 望 。X 0 1 2 3P 33.0解 : (1) X B( 3, 0.7)213 3.07.0 C 3.07.0 223 C 37.0(2) 32232133 7.033.07.023.07.013.00 CCEX 1.2EX 7.03 如 果 XB( n, p) , 那 么EX=? 1 110n k k n knknp C p q np 1 1 1 ( 1)10 1n nk k n k k k n kn nk kEX kC p q npC p q 一 般 地 , 如

11、 果 隨 機 變 量 X服 從 二 項 分 布 ,即 X B( n,p) , 則小 結 : npEX 證 明 : n),0,1,2,(kqpCk)P( knkkn 0nnnknkkn 1n11nn00n qpnCqpkC qpC1qpC0E )qpCqpC qpCqpnp(C 01n1n 1n1)(k1)(n1k1k 1n 2n11 1n1n00 1n 所 以 若 B(n, p), 則 E np 證 明 : 若 B(n, p), 則 E np 1( ) .nnp p q np 例 3.一 次 英 語 單 元 測 驗 由 20個 選 擇 題 構 成 ,每 個 選 擇 題 有 4個 選 項 , 其

12、 中 有 且 只 有 一 個選 項 是 正 確 答 案 , 每 題 選 擇 正 確 答 案 得 5分 ,不 作 出 選 擇 或 選 錯 不 得 分 , 滿 分 100分 , 學生 甲 選 對 任 一 題 的 概 率 為 0.9, 學 生 乙 則 在測 驗 中 對 每 題 都 從 4個 選 項 中 隨 機 地 選 擇 一個 。 求 學 生 甲 和 乙 在 這 次 英 語 單 元 測 驗 中 的成 績 的 期 望 。1 (20,0.9)X B 2 (20,0.25)X B 甲 選 對 題 數(shù) 為 1X乙 選 對 題 數(shù) 為 2X 歸 納 求 離 散 型 隨 機 變 量 均 值 的 步 驟 : 、

13、確 定 離 散 型 隨 機 變 量 可 能 的 取 值 。 、 寫 出 分 布 列 , 并 檢 查 分 布 列 的 正 確 與 否 。 、 求 出 均 值 。 學 生 甲 在 這 次 單 元 測 驗 中的 成 績 一 定 會 是 90分 嗎 ?他 的 成 績 的 均 值 是 90分 的含 義 是 什 么 例 4. 決 策 問 題 : 決 策 的 準 則 由 于 結 果 的 不 確 定 性 , 原 則 之 一 就 是 : 比 較各 種 決 策 的 “ 平 均 ” 好 處 , 哪 種 決 策 的 平 均 好 處大 , 就 選 哪 一 種 。 即 哪 個 決 策 的 期 望 值 大 , 就 選擇 哪

14、 一 種 。 例 : 在 一 個 潮 濕 的 雙 休 日 早 晨 , 你 想 步 行 會 一 個朋 友 。 由 于 擔 心 可 能 會 下 雨 , 準 備 帶 上 雨 傘 。 可能 采 取 的 行 動 有 兩 種 : 帶 上 雨 傘 或 把 雨 傘 留 在 家里 , 決 策 模 型 中 稱 之 為 “ 策 略 或 方 案 ” 。 碰 到 的 天 氣 情 況 也 有 兩 個 : 下 雨 和 不 下 雨 ,決 策 模 型 中 稱 之 為 “ 狀 態(tài) 或 事 件 ” 。 面 對 以 上 兩 個策 略 和 兩 種 狀 態(tài) , 有 且 僅 有 四 種 結 果 : 帶 了 雨 傘 , 下 雨 了 ; 帶

15、了 雨 傘 , 沒 下 雨 ; 把 雨 傘 留 下 , 下 雨 了 。 把 雨 傘 留 下 , 沒 下 雨 。 類 似 這 樣 的 決 策 問 題 , 我 們 稱 之 為 “ 風險 型 ” 決 策 問 題 。 特 點 是 , 決 策 中 可 能 碰 到 的 各 種 自 然 狀態(tài) ( 為 決 策 者 所 不 可 控 因 素 ) , 其 發(fā) 生 的 概率 是 已 知 的 , 或 者 是 可 以 估 算 出 來 。 決 策 的準 則 就 是 “ 期 望 值 ” 原 則 , 對 收 益 來 說 , 期望 值 越 大 越 好 , 對 損 失 來 說 , 期 望 值 越 小 越好 。 當 然 這 類 決

16、策 問 題 是 存 在 一 定 的 風 險 的 。 例 5.( 07全 國 ) 某 商 場 經 銷 某 商 品 , 根 據 以 往 資 料統(tǒng) 計 , 顧 客 采 用 的 分 起 付 款 期 數(shù) 的 分 布 列 為 : 1 2 3 4 5P 0.4 0.2 0.2 0.1 0.1商 場 經 銷 一 件 該 商 品 , 采 用 1期 付 款 , 其 利 潤 為 200元 , 分 2期 或 3期 付 款 , 其 利 潤 為 250元 , 分 4期 或 5期 付 款 , 其 利 潤 為 300元 , 表 示 經 銷 一 件 該 商 品 的利 潤 。( 1) 求 事 件 A: ” 購 買 該 商 品 的

17、 3位 顧 客 中 , 至 少 有一 位 采 用 1期 付 款 ” 的 概 率 P(A);( 2) 求 的 分 布 列 及 期 望 E 。 6(07 .20) 13 6 28 6 2. . ( E;P( E) 例 : 安 徽 ( 本 小 題 分 )在 醫(yī) 學 生 物 學 試 驗 中 , 經 常 以 果 蠅 作 為 試 驗 對 象 , 一個 關 有 只 果 蠅 的 籠 子 里 , 不 慎 混 入 了 只 蒼 蠅 ( 此 時 籠內 有 只 蠅 子 : 只 果 蠅 和 只 蒼 蠅 ) , 只 好 把 籠 子 打 開 一個 小 孔 , 讓 蠅 子 一 只 一 只 地 往 外 飛 , 直 到 兩 只 蒼

18、 蠅 都 飛出 , 再 關 閉 小 孔 以 表 示 籠 內 還 剩 下 的 果 蠅 的 只 數(shù) 寫出 的 分 布 列 ; 不 要 求 寫 計 算 過 程 ) 求 數(shù) 學 期 望 求 概 率 析 :審 清 題 意 是 解 決 該 題 的 關 鍵 . 1.抓 住 蠅 子 一 個 個 有 順 序 地 飛 出 ,易 聯(lián) 想 到 把 8只 蠅 子 看 作 8個 元 素 有 序 排 列 . , 由 于 =0“表 示 ” , 最 后 一 只 必 為果 蠅 , 所 以 有 =1“表 示 ” P ( =0 )= , 同 理 有 P ( =1 ) = =2“表 示 ” 有 P ( =2) = =3“表 示 ” 有

19、 P ( =3) =4“表 示 ” 有 P ( =4) = =5“表 示 ” 有 P ( =5) =6“表 示 ” 有 P ( =6) =1 72 788 728A AA 1 1 62 6 688 628A A AA 2 1 56 2 588 528A A AA 3 1 46 2 488 428A A AA 0 1 2 3 4 5 6p 的 分 布 列7 6 5 4 3 2 10 1 2 3 4 5 628 28 28 28 28 28 28 2E 728 628 528 428 328 228 128( ) ( 2) ( 2) ( 3) ( 4) ( 5) ( 6) 15 28p E pp

20、p p p p 例 7、 ( 07, 重 慶 ) 某 單 位 有 三 輛 汽 車 參 加 某 種 事 故保 險 , 單 位 年 初 向 保 險 公 司 交 納 900元 的 保 險 金 , 對在 一 年 內 發(fā) 生 此 種 事 故 的 每 輛 汽 車 , 單 位 可 獲 9000元 的 賠 償 ( 假 設 每 輛 車 最 多 只 賠 償 一 次 ) 。 設 這 三 輛車 在 一 年 內 發(fā) 生 此 種 事 故 的 概 率 分 別 為 1/9、 1/10、1/11, 且 各 車 是 否 發(fā) 生 事 故 相 互 獨 立 , 求 一 年 內 該單 位 在 此 保 險 中 :( 1) 獲 賠 的 概 率 ;( 2) 獲 賠 金 額 的 分 布 列 與 期 望 。 一 、 離 散 型 隨 機 變 量 取 值 的 平 均 值 nnii pxpxpxpxEX 2211P 1x ix2x 1p 2p ip nxnpX二 、 數(shù) 學 期 望 的 性 質 baEXbaXE )( 三 、 如 果 隨 機 變 量 X服 從 兩 點 分 布 ,X 1 0P p 1 p則 pEX 四 、 如 果 隨 機 變 量 X服 從 二 項 分 布 , 即X B( n,p) , 則 npEX

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!