數(shù)控機(jī)床外文文獻(xiàn)翻譯、中英文翻譯

上傳人:Q145****609 文檔編號:16689165 上傳時(shí)間:2020-10-22 格式:DOC 頁數(shù):13 大小:76.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
數(shù)控機(jī)床外文文獻(xiàn)翻譯、中英文翻譯_第1頁
第1頁 / 共13頁
數(shù)控機(jī)床外文文獻(xiàn)翻譯、中英文翻譯_第2頁
第2頁 / 共13頁
數(shù)控機(jī)床外文文獻(xiàn)翻譯、中英文翻譯_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《數(shù)控機(jī)床外文文獻(xiàn)翻譯、中英文翻譯》由會員分享,可在線閱讀,更多相關(guān)《數(shù)控機(jī)床外文文獻(xiàn)翻譯、中英文翻譯(13頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、外文資料 CNC machine tools While the specific intention and application for CNC machines vary from one machine type to another, all forms of CNC have common benefits. Here are hut a few of the more important benefits offered by CNC equipment. The first benefit offered by all forms of CNC machine tool

2、s is improved automation. The operator intervention related to producing workpieces can be reduced or eliminated. Many CNC machines can run unattended during their entire machining cycle, freeing the operator to do other tasks. This gives the CNC user several side benefits including reduced operator

3、 fatigue, fewer mistakes caused by human error, and consistent and predictable machining time for each workpiece. Since the machine will he running under program control, the skill level required of the CNC operator (related to basic machining practice) is also reduced as compared to a machinist pro

4、ducing workpieces with conventional machine tools. The second major benefit of CNC technology is consistent and accurate workpieces. Today’s CNC machines boast almost unbelievable accuracy and repeatability specifications. This means that once a program is verified, two, ten, or one thousand identi

5、cal workpieces can be easily produced with precision and consistency. A third benefit offered by most forms of CNC machine tools is flexibility. Since these machines are run from programs, running a different workpiece is almost as easy as loading a different program. Once a program has been verifi

6、ed and executed for one production run, it can be easily recalled the next time the workpiece is to be run. This leads to yet another benefit, fast change over. Since these machines are very easy to set up and run, and since programs can be easily loaded, they allow very short setup time. This is im

7、perative with today’s just-in-time (JIT) product requirements. Motion control - the heart of CNC The most basic function of any CNC machine is automatic, precise, and consistent motion control. Rather than applying completely mechanical devices to cause motion as is required on most conventional m

8、achine tools, CNC machines allow motion control in a revolutionary manner2. All forms of CNC equipment have two or more directions of motion, called axes. These axes can be precisely and automatically positioned along their lengths of travel. The two most common axis types are linear (driven along a

9、 straight path) and rotary (driven along a circular path). Instead of causing motion by turning cranks and handwheels as is required on conventional machine tools, CNC machines allow motions to be commanded through programmed commands. Generally speaking, the motion type (rapid, linear, and circula

10、r), the axes to move, the amount of motion and the motion rate (feedrate) are programmable with almost all CNC machine tools. A CNC command executed within the control tells the drive motor to rotate a precise number of times.The rotation of the drive motor in turn rotates the ball screw. And the b

11、all screw drives the linear axis (slide). A feedback device (linear scale) on the slide allows the control to confirm that the commanded number of rotations has taken place3. Though a rather crude analogy, the same basic linear motion can he found on a common table vise. As you rotate the vise cran

12、k, you rotate a lead screw that, in turn, drives the movable jaw on the vise. By comparison, a linear axis on a CNC machine tool is extremely precise. The number of revolutions of the axis drive motor precisely controls the amount of linear motion along the axis. How axis motion is commanded - unde

13、rstanding coordinate systems It would be infeasible for the CNC user to cause axis motion by trying to tell each axis drive motor how many times to rotate in order to command a given linear motion arnount4. (This would he like having to tgure out how many turns of the handle on a table vise will ca

14、use the movable jaw to move exactly one inch!) Instead, all CNC controls allow axis motion to he commanded in a much simpler and more logical way by utilizing sonic forni of coordinate system. The two most popular coordinate systems used with CNC machines arc the rectangular coordinate system and th

15、e polar coordinate system. By far, the more popular of these two is the rectangular coordinate system. The program zero point establishes the point of reference for motion commands in a CNC program. This allows the programmer to specify movements from a commt)fl location. If program zero is chosen

16、wisely. usually coordinates needed for the program can be taken directly from the print. With this technique, if the programmer wishes the tool to he sent to a position one inch to the right of the program zero point, X1.0 is commanded. lithe programmer wishes the tool to move to a position one inc

17、h above the program zero point, Y 1.0 is commanded. The control will automatically deteniiine how many times to rotate each axis drive motor and ball screw to make the axis reach the commanded destination point . This lets the programmer command axis motion in a very logical manner. All discussions

18、 to this point assume that the absolute mode of programming is used. The most common CNC word used to designate the absolute mode is G90.In the absolute mode, the end points for all motions will be specified from the program zero point. For beginners, this is usually the best and easiest method of s

19、pecifying end points for motion commands. However, there is another way of specifying end points for axis motion. In the incremental mode (commonly specified by G9 1), end points for motions are specified from the tool’s current position, not from program zero. With this method of commanding motion

20、, the programmer must always he asking “How far should I move the tool?”‘While there are times when the incremental mode can be very helpful, generally speaking, this is the more cumbersome and difficult method of specifying motion and beginners should concentrate on using the absolute mode. Be car

21、eful when making motion commands. Beginners have the tendency to think incrementally. If working in the absolute mode (as beginners should), the programmer should always be asking “To what position should the tool be moved?” This position is relative to program zero, NOT from the tools current posit

22、ion. Aside from making it very easy to determine the current position for any command, another benefit of working in the absolute mode has to do with mistakes made during motion commands. In the absolute mode, if a motion mistake is made in one command of the program, only one movement will be inco

23、rrect. On the other hand, if a mistake is made during incremental movements, all motions from the point of the mistake will also be incorrect. Assigning program zero Keep in mind that the CNC control must be told the location of the program zero point by one means or another. How this is done vari

24、es dramatically from one CNC machine and control to another. One (older) method is to assign program zero in the program. With this method, the programmer tells the control how far it is from the program zero point to the starting position of the machine. This is commonly done with a G92 (or G50) co

25、mmand at least at the beginning of the program and possibly at the beginning of each tool. Another, newer and better way to assign program zero is through some form of offset.Commonly machining center control manufacturers call offsets used to assign program zero fixture offsets. Turning center man

26、ufacturers commonly call offsets used to assign program zero for each tool geometry offsets. Flexible manufacturing cells A flexible manufacturing cell (FMC) can he considered as a flexible manufacturing subsystem. The following differences exist between the FMC and the FMS: I. An FMC is not unde

27、r the direct control of the central computer. Instead, instructions from the central computer are passed to the cell controller. 2. The cell is limited iii the number of part families it can manufacture. The following elements are normally found in an FMC: ? Cell controller ? Programmable logic

28、controller (PLC) ? More than one machine tool ? A materials handling device (robot or pallet) The FMC executes fixed machining operations with parts flowing sequentially between operations. High speed machining The term High Speed Machining (HSM) commonly refers to end milling at high rotationa

29、l speeds and high surface feeds. For instance, the routing of 1xckets in aluminum airframe sections with a very high material removal rate . Over the past 60 years, HSM has been applied to a wide range of metallic and non-metallic workpiece materials, including the production of components with spec

30、ific surface topography requirements and machining of materials with hardness of 50 HRC and above. With most steel components hardened to approximately 32-42 HRC, machining options currently include: Rough machining and semi-finishing of the material in its soft (annealed) condition heat treatment t

31、o achieve the final required hardness = 63 HRC machining of electrodes and Electrical Discharge Machining (EDM) of specific parts of dies and moulds (specifically small radii and deep cavities with limited accessibility for metal cutting tools) finishing and super-finishing of cylindrical/flat/cavit

32、y surfaces with appropriate cemented carbide, cermet, solid carbide, mixed ceramic or polycrystalline cubic boron nitride (PCBN) For many components, the production process involves a combination of these options and in the case of dies and moulds it also includes time consuming hand finishing. Con

33、sequently, production costs can be high and lead times excessive. It is typical in the die and mould industry to produce one or just a few tools of the same design. The process involves constant changes to the design, and because of these changes there is also a corresponding need for measuring and

34、 reverse engineering. The main criteria is the quality level of he die or mould regarding dimensional, geometric and surface accuracy. If the quality level after machining is poor and if it cannot meet the requirements, there will be a varying need of manual finishing work. This work produces satis

35、factory surface accuracy,but it always has a negative impact on the dimensional and geometric accuracy. One of the main aims for the die and mould industry has been, and still is, to reduce or eliminate the need for manual polishing and thus improve the quality and shorten the production costs and

36、lead times. Main economical and technical factors for the development of HSM Survival The ever increasing competition in the marketplace is continually setting new standards. The demands on time and cost efficiency is getting higher and higher. This has forced the development of new processes and

37、 production techniques to take place. HSM provides hope and solutions... Materials The development of new, more difficult to machine materials has underlined the necessity to find new machining solutions. The aerospace industry has its heat resistant and stainless steel alloys. The automotive indu

38、stry has different bimetal compositions, Compact Graphite Iron and an ever increasing volume of aluminum3. The die and mould industry mainly has to face the problem of machining high hardened tool steels, from roughing to finishing. Quality The demand for higher component or product quality is he

39、result of ever increasing competition. HSM. if applied correctly, offers a number of solutions in this area. Substitution of manual finishing is one example, which is especially iniportant on dies and moulds or components with a complex 3D geometry. Processes The demands on shorter throughput time

40、s via fewer setups and simplified flows (logistics) can in most cases, be solved by HSM. A typical target within the die and mould industry is to completely machine fully hardened small sized tools in one setup. Costly and time consuming EDM processes can also he reduced or eliminated with HSM. Des

41、ign & development One of the main tools iii today’s competition is to sell products on the value of novelty. The average product life cycle on cars today is 4 years, computers and accessories 1 .5 years, hand phones 3 months... One of the prerequisites of this development of fast design changes and

42、 rapid product development time is the HSM technique. Complex products There is an increase of multi-functional surfaces on components. such as new design of turbine blades giving new and optimized functions and features. Earlier designs allowed polishing by hand or with robots (manipulators). Tur

43、bine blades with new, more sophisticated designs have to be finished via machining and preferably by HSM . There are also more and more examples of thin walled workpieces that have to be machined (medical equipment, electronics, products for defence, computer parts) Production equipment The strong

44、 development of cutting materials, holding tools, machine tools, controls and especially CAD/CAM features and equipment, has opened possibilities that niust be met with new production methods and tcchniqucs. Definition of HSM Salomon’s theory. “Machining with high cutting speeds...” on which, in 1

45、931, took out a German patent, assumes that “at a certain cutting speed (5-10 times higher than in conventional machining), the chip removal temperature at the cutting edge will start to decrease...” Given the conclusion:” ... seems to give a chance to improve productivity in machining with convent

46、ional tools at high cutting speeds...” Modern research, unfortunately, has not been able to verify this theory totally. There is a relative decrease of the temperature at the cutting edge that starts at certain cutting speeds for different materials. The decrease is small for steel and cast iron.

47、But larger fir aluminum and other non-ferrous metals. The definition of HSM must be based on other factors. Given today’s technology. “high speed” is generally accepted to mean surface speeds between I and 10 kilomewrs per minute or roughly 3 300 to 33 000 feet per minute. Speeds above 10 km/min ar

48、e in the ultra-high speed category, and are largely the realm of experimental metal cutting. Obviously, the spindle rotations required to achieve these surface cutting speeds are directly related to the diameter of the tools being used. One trend which is very evident today is the use of very large

49、cutter diameters for these applications - and this has important implications for tool design. There are many opinions, many myths and many different ways to define HSM. 中文譯文 數(shù)控機(jī)床 雖然各種數(shù)控機(jī)床的功能和應(yīng)用各不相同,擔(dān)它們有著共同的優(yōu)點(diǎn)。這里是數(shù)控設(shè)備提供的比較重要的幾個(gè)優(yōu)點(diǎn)。 各種數(shù)控機(jī)床的第一個(gè)優(yōu)點(diǎn)足自動化程度提高了。零件制造過程中的人為干預(yù)減少或者免除了。整個(gè)加工循環(huán)中,很多數(shù)控機(jī)床處于幾無人照

50、看狀態(tài),這使操作員被解放出來,可以干別的工作。數(shù)控機(jī)床用戶得到的兒個(gè)額外好處是:數(shù)控機(jī)床減小了操作員的疲勞程度,減少了人為誤差,工件加工時(shí)間一致而且可頂測。由于機(jī)床在程序的控制下運(yùn)行,與操作普通機(jī)床的機(jī)械師要求的技能水平相比,對數(shù)控操作員的技能水平要求(與基本加工實(shí)踐相關(guān))也降低了。 數(shù)控技術(shù)的第二個(gè)優(yōu)點(diǎn)是工件的一致性好,加工精度高?,F(xiàn)在的數(shù)控機(jī)床宣稱的精度以及重復(fù)定位精度幾乎令人難以置信。這意味著,一旦程序被驗(yàn)證是正確的,可以很容易地加工出 2 個(gè)、 10 個(gè)或 1000 個(gè)相同的零件,而且它們的精度高,一致性好。 大多數(shù)數(shù)控機(jī)床的第三個(gè)優(yōu)點(diǎn)是柔性強(qiáng)。由于這些機(jī)床在程序的控制下工作,加工

51、不同的工件易如在數(shù)控系統(tǒng)中裝載一個(gè)不同的程序而己。一旦程序驗(yàn)證正確,并且運(yùn)行一次,下次加工工件的時(shí)候,可以很方便地重新調(diào)用程序。這又帶來另一個(gè)好處——可以快速切換不同工件的加工。由于這些機(jī)床很容易調(diào)整并運(yùn)行,也由于幾很容易裝載加工程序,因此機(jī)床的調(diào)試時(shí)間很短。這是當(dāng)今準(zhǔn)時(shí)生產(chǎn)制造模式所要求的。 運(yùn)動控制一CNC 的核心 任何數(shù)控機(jī)床最基本的功能是其有自動、精確、一致的運(yùn)動控制。大多數(shù)普通機(jī)床完全運(yùn)用機(jī)械裝置實(shí)現(xiàn)其所需的運(yùn)動,而數(shù)控機(jī)床是以一種全新的方式控制機(jī)床的運(yùn)動。各種數(shù)控設(shè)備有兩個(gè)或多個(gè)運(yùn)動方向,稱為軸。這些軸沿著其長度方向精確、自動定位。最常用的兩類軸是直線軸(沿直線軌跡)和旋轉(zhuǎn)軸(

52、沿圓形軌跡)。 普通機(jī)床需通過旋轉(zhuǎn)搖柄和手輪產(chǎn)生運(yùn)動,而數(shù)控機(jī)床通過編程指令產(chǎn)生運(yùn)動。通常,幾乎所有的數(shù)控機(jī)床的運(yùn)動類型(快速定位、穴線插補(bǔ)和圓弧插補(bǔ))、移動軸、移動距離以及移動速度(進(jìn)給速度)都是可編程的。 數(shù)控系統(tǒng)中的 CNC 指令命令驅(qū)動電機(jī)旋轉(zhuǎn)某一精確的轉(zhuǎn)數(shù),驅(qū)動電機(jī)的旋轉(zhuǎn)隨叩使?jié)L珠絲杠旋轉(zhuǎn),滾珠絲杠將旋轉(zhuǎn)運(yùn)動轉(zhuǎn)換成直線軸(滑臺)運(yùn)動?;_上的反饋裝置(直線光柵尺)使數(shù)控系統(tǒng)確認(rèn)指令轉(zhuǎn)數(shù)己完成 。 普通的臺虎鉗上有著同樣的基本直線運(yùn)動,盡管這是相當(dāng)原始的類比。旋轉(zhuǎn)虎鉗搖柄就是旋轉(zhuǎn)絲杠, 絲杠帶動虎虎鉗鉗口移動。與臺虎鉗相比,數(shù)控機(jī)床的直線軸是非常精確的,軸的驅(qū)動電機(jī)的轉(zhuǎn)數(shù)精確控制

53、直線軸的移動距離。 軸運(yùn)動命令的方式——理解坐標(biāo) 對 CNC 用 戶來說,為了達(dá)到給定的直線移動量而指令各軸驅(qū)動電機(jī)旋轉(zhuǎn)多少轉(zhuǎn),從而使坐標(biāo)軸運(yùn)動,這種方法是不可行的。(這就好像為了使鉗口準(zhǔn)確移動l英寸需要計(jì)算出臺虎鉗搖柄的轉(zhuǎn)數(shù)?。┦聦?shí)上,所有的數(shù)控系統(tǒng)都能通過采用坐標(biāo)系的形式以一種較為簡單而且合理的方式來指令軸的運(yùn)動。數(shù)控機(jī)床上使用最泛的兩種坐標(biāo)系是直角坐標(biāo)系和極坐標(biāo)系。目前用得較多的是直角坐標(biāo)系。 編程零點(diǎn)建立數(shù)控程序中運(yùn)動命令的參考點(diǎn)。這使得操作員能從一個(gè)公共點(diǎn)開始指定軸運(yùn)動。如果編程零點(diǎn)選擇恰當(dāng),程序所需坐標(biāo)通??蓮膱D紙上直接獲得。 如果編程員希望刀具移動到編程零點(diǎn)右方1英寸(

54、25 . 4 毫米)的位置,則用這種方法指令 X1.0 即可。如果編程員希望刀其移動到編程零點(diǎn)上方 1 英寸的位置,則指令 YI . 0 。數(shù)控系統(tǒng)會自動確定(計(jì)算)各軸馭動電機(jī)和滾珠絲掃要轉(zhuǎn)動多少轉(zhuǎn),使坐標(biāo)軸到達(dá)指令的目標(biāo)位置。這使編程員以非常合理的方式命令軸的運(yùn)動。 理解絕對和相對運(yùn)動 至此,所有的討論都假設(shè)采用的是絕對編程方式。用于指定絕對方式的址常用的數(shù)控代碼是 G90 。絕對方式下,所有運(yùn)動終點(diǎn)的指定都是以編程零點(diǎn)為起點(diǎn)。對初學(xué)者來說,這通常是較好也是址容易的指定軸運(yùn)動終點(diǎn)的方法,但還有另外一種指定軸運(yùn)動終點(diǎn)的方法。 增量方式(通常用 G91 指定)下,運(yùn)動終點(diǎn)的指定是以刀具

55、的當(dāng)前位置為起點(diǎn),而不是編程零點(diǎn)。用這種方法指定軸運(yùn)動,編程員往往會問“我該將刀其移動多遠(yuǎn)的即離? " ,盡管增最方式多數(shù)時(shí)候很有用,但一般說來,這種方法指定軸運(yùn)動較麻煩、困難,初學(xué)者應(yīng)該重點(diǎn)使用絕對方式。 指令軸運(yùn)動時(shí)一定要小心。初學(xué)者往往以增量方式思考問題。如果工作在絕對方式(初學(xué)者應(yīng)該如此),編程員應(yīng)始終在問‘刀具應(yīng)該移到什么位置?” ,這個(gè)位置是相對于編程零點(diǎn)這個(gè)固定位置而言,而不是相對于刀具當(dāng)前位置。 絕對工作方式很容易確定指令當(dāng)前位置,除此之外,它的另外一個(gè)好處涉及軸運(yùn)動中的錯誤。絕對方式下,如果程序的一個(gè)軸運(yùn)動指令出錯,則只有一個(gè)運(yùn)動是不止確的。而另一方面,如果在增量運(yùn)動過程

56、中出錯,則從出錯的那一點(diǎn)起,所有的運(yùn)動都是不止確的。 指定編程零點(diǎn) 記住必須以某種方式對數(shù)控系統(tǒng)指定編程零點(diǎn)的位置。指定編程零點(diǎn)的方式隨數(shù)控機(jī)床和數(shù)控系統(tǒng)的不同而很不相同。(較老的)一種方法是在程序中指定編程零點(diǎn)。用這種方法,編程員告訴數(shù)控系統(tǒng)從編程零點(diǎn)到機(jī)床起始點(diǎn)的即離。通常用 G92 (或 G50 )在程序的一開始指定,很能在各把刀具的開頭指定編程零點(diǎn)。 另一種較新、更好的指定編程零點(diǎn)的方法是通過偏置的形式,。通常,加工中心用于指定編程零點(diǎn)的偏置被稱作夾具偏置,車削中心上用于指定編程零點(diǎn)的偏置被稱作刀具幾何偏置。 柔性制造單元 柔性制造單元 ( FMC )被認(rèn)為是柔性制造子系統(tǒng)。

57、以下是 FMC 和 FMS 之間的別: 1.FMC 不受中央計(jì)算機(jī)的直接拎制,中央計(jì)算機(jī)發(fā)出的指令被傳送到單元控制器。 2.FMC 能制造的零件族的數(shù)口有限。 FMC 一般由下列部分組成: .單元控制器 . 可編程邏輯控制器( PLC ) . 一臺以上的機(jī)床 .物流設(shè)備(機(jī)器人或托盤) FMC 按順序?qū)α慵鲌?zhí)行固定的加工操作。 高速加工 術(shù)語“高速加工 ( HMS ) ”一 般是指在高轉(zhuǎn)速和大進(jìn)給量下的立銑。例如,以很高的金屬切除率對鋁合金飛機(jī)翼架的凹處進(jìn)行切削。在過去的 60 年中,高速加工己經(jīng)廣泛應(yīng)用于金屬與非金屬材料,包括有特定表面形狀要求的零件生產(chǎn)和

58、硬度高于或等于 HRC 50 的材料切削。對于大部分淬火到約為 HRC 32- 42的鋼零件,當(dāng)前的切削選項(xiàng)包括: .在軟(退火)工況下材料的粗加工和半精加工 .達(dá)到最終硬度要求為 HRC 63 的熱處理 .模具行業(yè)的某些零件的電極加工和放電加工 ( EDM ) (特別是金屬切削刀具難以加工的小半徑圓弧和深凹穴) .用適合的硬質(zhì)合金、金屬陶瓷、整體硬質(zhì)合金、混合陶瓷或多晶立方氮化硼( PCBN )刀具進(jìn)行的圓柱/平面 /凹穴表面的精加工和超精加工。 對于許多零件,生產(chǎn)過程牽涉到這些選項(xiàng)的組合,在模具制造案例中,它還包括費(fèi)時(shí)的精加工,結(jié)果導(dǎo)致生產(chǎn)成本高和準(zhǔn)備時(shí)間長。 在模具制造業(yè)中典

59、型的是僅生產(chǎn)一個(gè)或幾個(gè)同一產(chǎn)品。生產(chǎn)過程中,產(chǎn)品的設(shè)計(jì)不斷改變,由于產(chǎn)品改變,模具制造中需要測量與反求工程。 加工的主要標(biāo)準(zhǔn)是模具的尺寸和表面粗糙度方面的質(zhì)量水平。如果加工后的質(zhì)量水平低,不能滿足要求,就需手工精加工。手工精加工可產(chǎn)生令人滿意的表面粗糙度,但是對尺寸和幾何精度總是產(chǎn)生不好的影響。 模具制造業(yè)的主要目標(biāo)之一,一直是并且仍然是減少或免除手工拋光,從而提高質(zhì)量、降低生產(chǎn)成木和縮短準(zhǔn)備時(shí)間。 影響高速加工發(fā)展的主要經(jīng)濟(jì)和技術(shù)因素 生存 日益激烈的市場競爭導(dǎo)致不斷設(shè)立新的標(biāo)準(zhǔn),對時(shí)間和成本效率的要求越來越高,這就迫使新工藝和生產(chǎn)技術(shù)不斷發(fā)展。高速加工提供了希望和解決方案 … …

60、 材料 新型難加工材料的開發(fā)迫切需要尋找新的切削解決方案。航空航天業(yè)使用耐熱合金鋼和不銹鋼,汽車工業(yè)使用了不同的雙金屬材料、小石墨鑄鐵,并增加了鋁用量。模具制造業(yè)必須面對切削高硬度的淬決鋼的問題.從粗加工到精加工。 質(zhì)量 對質(zhì)量的高要求是空前激烈竟?fàn)幩鶎?dǎo)致的結(jié)果。高速加工如果使用得正確,可以在這個(gè)領(lǐng)域提供一些解決方案。替代手工精加工是一個(gè)例子,這對有復(fù)雜 3D 幾何形狀的模其尤為重要。 工藝 通過減少裝卡次數(shù)和簡化物流(后勤)來縮短產(chǎn)品產(chǎn)出時(shí)間的要求在大部分情況下可由 高速加工解決。模具制造業(yè)內(nèi)的一個(gè)典型目標(biāo)是在一次裝卡中完成所有完全淬火小零件的切削。使用高速切削,可以減少和免除

61、費(fèi)時(shí)、費(fèi)錢的放電加工(EDM)。 設(shè)計(jì)與發(fā)展 今競爭中的主要方法之一是銷售新奇的產(chǎn)品。現(xiàn)在小汽車的平均生命周期是 4 年,計(jì)算機(jī)和配件 1 年半,手機(jī) 3 個(gè)月 … … 這種快速的產(chǎn)品設(shè)計(jì)周期和開發(fā)周期的先決條件是高速切削技術(shù)。 復(fù)雜產(chǎn)品 零件多功能表面增加了,例如新設(shè)計(jì)的渦輪葉片有新的、優(yōu)化的功能與特性。早期的設(shè)計(jì)允許用手工或機(jī)器人(機(jī)械手)來拋光。新型、形狀復(fù)雜的渦輪葉片必須通過切削來完成精加工,最好是用高速切削完成。薄壁工件必須用切削進(jìn)行精加的例子越來越多(醫(yī)療設(shè)務(wù)、電子、國防產(chǎn)品 、計(jì)算機(jī)零件)。 產(chǎn)品設(shè)備 切削材料、刀柄刀具、機(jī)床、數(shù)控系統(tǒng),特別是 CAD / CAM功能

62、和設(shè)備的巨大發(fā)展己經(jīng)使采用新的生產(chǎn)方法和技術(shù)成為可能和必須。 高速加工的原始定義 1931 年 Salomom 的高速加工理論獲得了一項(xiàng)德國專利,他認(rèn)為“在高于常規(guī)切削速度 5 一10 倍的切削速度下,刀刃的切削溫度將開始下降 … … ’ 由以上得出結(jié)論:“ … … 用常規(guī)刀具以高切削速度加工,從而提高生產(chǎn)率,這是可能的 … … ” 可惜,現(xiàn)代研究還沒能全面驗(yàn)證這個(gè)理論。對于不同的材料,從某一切削速度開始切削刃上的溫有所降低。 對于鋼和鑄鐵來說,這種溫度降低不大。但是對鋁和其他非金屬來說則是大的。高速切削的定義須依據(jù)其他因素。 按照現(xiàn)在的技術(shù),普遍認(rèn)為“高速”,是指表面速度在1- 10 千米/分鐘( k /min ) ,或者約 3300 一 330 英尺/分鐘( ft / min )。 10 千米/分鐘以上的速度屬于超高速范疇,還在實(shí)驗(yàn)室金屬切削范圍.顯然獲得這些表面切削速度所要求的主軸轉(zhuǎn)速直接與使用的刀具直徑有關(guān)。當(dāng)前較顯著的趨勢是采用大直刀具——這對刀具的設(shè)計(jì)有著重要的啟發(fā)。 關(guān)于高速切削的定義,存在許多觀點(diǎn)、許多謎團(tuán)和許多不同的方法。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!