《2013高考數(shù)學(xué) 考前知識(shí)要點(diǎn)復(fù)習(xí)二 函數(shù)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2013高考數(shù)學(xué) 考前知識(shí)要點(diǎn)復(fù)習(xí)二 函數(shù)(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高中數(shù)學(xué)第二章-函數(shù)
考試內(nèi)容:
映射、函數(shù)、函數(shù)的單調(diào)性、奇偶性.
反函數(shù).互為反函數(shù)的函數(shù)圖像間的關(guān)系.
指數(shù)概念的擴(kuò)充.有理指數(shù)冪的運(yùn)算性質(zhì).指數(shù)函數(shù).
對(duì)數(shù).對(duì)數(shù)的運(yùn)算性質(zhì).對(duì)數(shù)函數(shù).
函數(shù)的應(yīng)用.
考試要求:
(1)了解映射的概念,理解函數(shù)的概念.
(2)了解函數(shù)單調(diào)性、奇偶性的概念,掌握判斷一些簡(jiǎn)單函數(shù)的單調(diào)性、奇偶性的方法.
(3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關(guān)系,會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù).
(4)理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像 和性質(zhì).
(5)理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì);掌握對(duì)數(shù)函數(shù)的概
2、念、圖像和性質(zhì).
(6)能夠運(yùn)用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)解決某些簡(jiǎn)單的實(shí)際問(wèn)題.
§02. 函數(shù) 知識(shí)要點(diǎn)
一、本章知識(shí)網(wǎng)絡(luò)結(jié)構(gòu):
二、知識(shí)回顧:
l 映射與函數(shù)
1. 映射與一一映射
2.函數(shù)
函數(shù)三要素是定義域,對(duì)應(yīng)法則和值域,而定義域和對(duì)應(yīng)法則是起決定作用的要素,因?yàn)檫@二者確定后,值域也就相應(yīng)得到確定,因此只有定義域和對(duì)應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù).
3.反函數(shù)
反函數(shù)的定義
設(shè)函數(shù)的值域是C,根據(jù)這個(gè)函數(shù)中x,y 的關(guān)系,用y把x表示出,得到x=(y). 若對(duì)于y在C中的任何一個(gè)值,通過(guò)x=(y),x
3、在A中都有唯一的值和它對(duì)應(yīng),那么,x=(y)就表示y是自變量,x是自變量y的函數(shù),這樣的函數(shù)x=(y) (yC)叫做函數(shù)的反函數(shù),記作,習(xí)慣上改寫(xiě)成
(二)函數(shù)的性質(zhì)
⒈函數(shù)的單調(diào)性
定義:對(duì)于函數(shù)f(x)的定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x1,x2,
⑴若當(dāng)x1f(x2),則說(shuō)f(x) 在這個(gè)區(qū)間上是減函數(shù).
若函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),則就說(shuō)函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,這一區(qū)間叫做函數(shù)y=f(x)的單調(diào)區(qū)間.此時(shí)也說(shuō)函數(shù)是這
4、一區(qū)間上的單調(diào)函數(shù).
2.函數(shù)的奇偶性
7. 奇函數(shù),偶函數(shù):
⑴偶函數(shù):
設(shè)()為偶函數(shù)上一點(diǎn),則()也是圖象上一點(diǎn).
偶函數(shù)的判定:兩個(gè)條件同時(shí)滿(mǎn)足
①定義域一定要關(guān)于軸對(duì)稱(chēng),例如:在上不是偶函數(shù).
②滿(mǎn)足,或,若時(shí),.
⑵奇函數(shù):
設(shè)()為奇函數(shù)上一點(diǎn),則()也是圖象上一點(diǎn).
奇函數(shù)的判定:兩個(gè)條件同時(shí)滿(mǎn)足
①定義域一定要關(guān)于原點(diǎn)對(duì)稱(chēng),例如:在上不是奇函數(shù).
②滿(mǎn)足,或,若時(shí),.
8. 對(duì)稱(chēng)變換:①y = f(x)
②y =f(x)
③y =f(x)
9. 判斷函數(shù)單調(diào)性(定義)作差法:對(duì)帶根號(hào)的一定要分子有理化,例如:
在進(jìn)行討論.
10
5、. 外層函數(shù)的定義域是內(nèi)層函數(shù)的值域.
例如:已知函數(shù)f(x)= 1+的定義域?yàn)锳,函數(shù)f[f(x)]的定義域是B,則集合A與集合B之間的關(guān)系是 .
解:的值域是的定義域,的值域,故,而A,故.
11. 常用變換:
①.
證:
②
證:
12. ⑴熟悉常用函數(shù)圖象:
例:→關(guān)于軸對(duì)稱(chēng). →→
→關(guān)于軸對(duì)稱(chēng).
⑵熟悉分式圖象:
例:定義域,
值域→值域前的系數(shù)之比.
(三)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)
指數(shù)函數(shù)的圖象和性質(zhì)
a>1
0
6、象
性
質(zhì)
(1)定義域:R
(2)值域:(0,+∞)
(3)過(guò)定點(diǎn)(0,1),即x=0時(shí),y=1
(4)x>0時(shí),y>1;x<0時(shí),00時(shí),01.
(5)在 R上是增函數(shù)
(5)在R上是減函數(shù)
對(duì)數(shù)函數(shù)y=logax的圖象和性質(zhì):
對(duì)數(shù)運(yùn)算:
(以上)
a>1
00
時(shí)
7、
時(shí)
(5)在(0,+∞)上是增函數(shù)
在(0,+∞)上是減函數(shù)
注⑴:當(dāng)時(shí),.
⑵:當(dāng)時(shí),取“+”,當(dāng)是偶數(shù)時(shí)且時(shí),,而,故取“—”.
例如:中x>0而中x∈R).
⑵()與互為反函數(shù).
當(dāng)時(shí),的值越大,越靠近軸;當(dāng)時(shí),則相反.
(四)方法總結(jié)
⑴.相同函數(shù)的判定方法:定義域相同且對(duì)應(yīng)法則相同.
⑴對(duì)數(shù)運(yùn)算:
(以上)
注⑴:當(dāng)時(shí),.
⑵:當(dāng)時(shí),取“+”,當(dāng)是偶數(shù)時(shí)且時(shí),,而,故取“—”.
例如:中x>0而中x∈R).
⑵()與互為反函數(shù).
當(dāng)時(shí),的值越大,越靠近軸;當(dāng)時(shí),則相反.
⑵.函數(shù)表達(dá)式的求法:①
8、定義法;②換元法;③待定系數(shù)法.
⑶.反函數(shù)的求法:先解x,互換x、y,注明反函數(shù)的定義域(即原函數(shù)的值域).
⑷.函數(shù)的定義域的求法:布列使函數(shù)有意義的自變量的不等關(guān)系式,求解即可求得函數(shù)的定義域.常涉及到的依據(jù)為①分母不為0;②偶次根式中被開(kāi)方數(shù)不小于0;③對(duì)數(shù)的真數(shù)大于0,底數(shù)大于零且不等于1;④零指數(shù)冪的底數(shù)不等于零;⑤實(shí)際問(wèn)題要考慮實(shí)際意義等.
⑸.函數(shù)值域的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.
⑹.單調(diào)性的判定法:①設(shè)x,x是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x<x;②判定f(x)與f(x)的大??;③作差比較或作商比較.
⑺.奇偶性的判定法:首先考察定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),再計(jì)算f(-x)與f(x)之間的關(guān)系:①f(-x)=f(x)為偶函數(shù);f(-x)=-f(x)為奇函數(shù);②f(-x)-f(x)=0為偶;f(x)+f(-x)=0為奇;③f(-x)/f(x)=1是偶;f(x)÷f(-x)=-1為奇函數(shù).
⑻.圖象的作法與平移:①據(jù)函數(shù)表達(dá)式,列表、描點(diǎn)、連光滑曲線;②利用熟知函數(shù)的圖象的平移、翻轉(zhuǎn)、伸縮變換;③利用反函數(shù)的圖象與對(duì)稱(chēng)性描繪函數(shù)圖象.