《河北省衡水市2019年高考數學 各類考試分項匯編 專題06 數列、不等式 文》由會員分享,可在線閱讀,更多相關《河北省衡水市2019年高考數學 各類考試分項匯編 專題06 數列、不等式 文(14頁珍藏版)》請在裝配圖網上搜索。
1、專題06 數列、不等式
一、選擇題
1. 【河北衡水金卷2019屆高三12月第三次聯合質量測評】朱世杰是歷史上最偉大的數學家之一,他所著的《四元玉鑒》卷中“如像招數”五問中有如下問題:“今有官司差夫一千九百八十四人筑堤,只云初日差六十四人,次日轉多八人,每人日支米三升”.其大意為“官府陸續(xù)派遣1984人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數比前一天多8人,修筑堤壩的每人每天分發(fā)大米3升”,在該問題中的1984人全部派遣到位需要的天數為
A.14 B.16 C.18 D.20
【答案】B
2. 【河北省衡水市武邑中學2018年高三高考三?!恳阎炔?/p>
2、數列的前n和為,若,,則
A.23 B.24 C.25 D.26
【答案】A
【解析】
等差數列的前和為,,,,解得,,故選A.
6. 【河北省衡水中學2018屆高三第十六次模擬考試】已知數列是各項為正數的等比數列,點、都在直線上,則數列的前項和為( )
A. B. C. D.
【答案】C
【解析】因為點、都在直線上,
所以,可得,
,可得,
,故選C.
10. 【河北省衡水中學2018年高考押題(一)】在等比數列中,“是方程的兩根”是“”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件
3、 D.既不充分也不必要條件
【答案】D
11. 【河北省衡水中學2018年高考押題(三)】已知實數滿足,則的最小值為( )
A. B. C. D.
【答案】D
【解析】作出可行域:所以當取B時目標函數取得最小值-4-1=-5
16. 【河北省衡水中學2018屆高三上學期七調考試】已知數列為等比數列,若,則
A.有最小值12 B.有最大值12
C.有最小值4 D.有最大值4
【答案】A
17. 【河北省衡水中學2018屆高三上學期七調考試】電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播
4、放時長、廣告播放時長、收視人次如下表所示:
電視臺每周安排的甲、乙連續(xù)劇的總播放時長不多于,廣告的總播放時長不少于,且甲連續(xù)劇播放的次數不多于乙連續(xù)劇播放次數的2倍,分別用, 表示每周計劃播出的甲、乙兩套連續(xù)劇的次數,要使總收視人次最多,則電視臺每周播出甲、乙兩套連續(xù)劇的次數分別為( )
A.6,3 B.5,2 C.4,5 D.2,7
【答案】A
【解析】依題意得,目標函數為,畫出可行域如下圖所示,由圖可知,目標函數在點處取得最大值.故選A.
故答案為:
3. 【河北省衡水中學2018屆高三第十次模擬考試】已知實數滿足條件,則的最大值是________
5、__.
【答案】7
4. 【河北省衡水中學2018屆高三第十次模擬考試】正整數數列滿足,已知, 的前項和的最大值為,把的所有可能取值按從小到大排成一個新數列, 所有項和為,則__________.
【答案】64
【解析】∵正整數數列滿足, 故可采用逆推的思想得如下圖所示:
,
則的前項和的最大值, 所有項和,故,故答案為64.
5. 【河北省衡水中學2018屆高三第十六次模擬考試】若變量,滿足約束條件,且的最小值為,則_________.
【答案】
6. 【河北省衡水中學2018屆高三第十七次模擬考試】若數列是等差數列,對于,則數列也是等差數列.類比上述性質,若數列是各項
6、都為正數的等比數列,對于時,數列也是等比數列,則
【答案】
【解析】試題分析:等差數列中的和類別為等比數列中的乘積,是各項的算術平均數,類比等比數列中是各項的幾何平均數,因此
7. 【河北省衡水中學2018屆高三第十七次模擬考試】已知是區(qū)間上的任意實數,直線與不等式組表示的平面區(qū)域總有公共點,則直線的傾斜角的取值范圍為__________.
【答案】
結合圖形可得要使直線與不等式組表示的平面區(qū)域總有公共點,只需滿足.
∴直線的斜率
∴直線的傾斜角的取值范圍為.
12. 【河北省衡水中學2019屆高三第一次摸底考試】已知實數滿足不等式組,則的最小值為______.
【答案
7、】-6
【解析】
畫出實數滿足不等式組表示的平面區(qū)域,
將變形為,
平移直線,
由圖可知當直經過點時,
直線在軸上的截距最大,
當目標函數過點時,取得最小值,
由,解得,
得,
得,解得或(舍去).
所以數列的通項公式為.
(2)因為,
所以
.
3. 【河北省衡水中學2019屆高三上學期四調】已知數列,滿足,.
(1)設,求數列的通項公式;
(2)若,求.
【答案】(1);(2).
(2)由(1)知,,∴,
從而,
.
4. 【河北省衡水中學2019屆高三上學期三調考試】已知等差數列的前項和為,且滿足,.
(1)求的通項公式;
(
8、2)求的值.
【答案】(1) .; (2).
5. 【河北省衡水中學2019屆高三上學期三調考試】已知數列中,,.
(1)求的通項公式;
(2)數列滿足,數列的前項和為,若不等式對一切恒成立,求的取值范圍.
【答案】(1)見解析; (2).
【解析】
(1)證明:由,
得,
∴,
所以數列是以3為公比,以為首項的等比數列,
從而;
(2),
.
,兩式相減得
,
∴.
∴,
若為偶數,則,∴,
若為奇數,則,∴,∴,
∴.
9. 【河北省衡水中學2018屆高三高考押題(一)】已知函數(),數列的前項和為,點在圖象上,且的最小值為.
(1)求數列的通項公式;
(2)數列滿足,記數列的前項和為,求證:.
【答案】(1) .
(2)見解析.
(2)證明:由(1)知,
所以,
所以.
14