(通用版)2020版高考數(shù)學大二輪復習 專題突破練13 等差、等比數(shù)列的綜合問題 文

上傳人:Sc****h 文檔編號:120732539 上傳時間:2022-07-18 格式:DOCX 頁數(shù):12 大小:2.29MB
收藏 版權申訴 舉報 下載
(通用版)2020版高考數(shù)學大二輪復習 專題突破練13 等差、等比數(shù)列的綜合問題 文_第1頁
第1頁 / 共12頁
(通用版)2020版高考數(shù)學大二輪復習 專題突破練13 等差、等比數(shù)列的綜合問題 文_第2頁
第2頁 / 共12頁
(通用版)2020版高考數(shù)學大二輪復習 專題突破練13 等差、等比數(shù)列的綜合問題 文_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(通用版)2020版高考數(shù)學大二輪復習 專題突破練13 等差、等比數(shù)列的綜合問題 文》由會員分享,可在線閱讀,更多相關《(通用版)2020版高考數(shù)學大二輪復習 專題突破練13 等差、等比數(shù)列的綜合問題 文(12頁珍藏版)》請在裝配圖網上搜索。

1、專題突破練13 等差、等比數(shù)列的綜合問題 1.已知Sn是等差數(shù)列{an}的前n項和,且a3=-6,S5=S6. (1)求{an}的通項公式; (2)若等比數(shù)列{bn}滿足b1=a2,b2=S3,求{bn}的前n項和. 2.(2019北京豐臺區(qū)高三第二學期綜合練習二)已知數(shù)列{an}滿足a1=1,an+1=e·an(e是自然對數(shù)的底數(shù),n∈N*). (1)求{an}的通項公式; (2)設數(shù)列{ln an}的前n項和為Tn,求證:當n≥2時,1T2+1T3+…+1Tn<2. 3.設等差數(shù)列{an}的公差不為0,a2=1,

2、且a2,a3,a6成等比數(shù)列. (1)求{an}的通項公式; (2)設數(shù)列{an}的前n項和為Sn,求使Sn>35成立的n的最小值. 4.已知等比數(shù)列{an}的前n項和為Sn,a1=3,且3S1,2S2,S3成等差數(shù)列. (1)求數(shù)列{an}的通項公式; (2)設bn=log3an,求Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1. 5.(2019河北保定高三第二次模擬考試)已知函數(shù)f(x)=log

3、3(ax+b)的圖象經過點A(2,1)和B(5,2),an=an+b,n∈N*. (1)求an; (2)設數(shù)列{an}的前n項和為Sn,bn=2n+2Sn,求{bn}的前n項和Tn. 6.(2019廣東佛山第一中學高三上學期期中考試)等差數(shù)列{an}中,a1=3,前n項和為Sn,等比數(shù)列{bn}各項均為正數(shù),b1=1,且b2+S2=12,{bn}的公比q=S2b2. (1)求an與bn; (2)求Tn=Sb1+Sb2+Sb3+Sb4+…+Sbn. 7.已知{an}是首項為1的等比數(shù)列,數(shù)列{bn}滿足b1=2,b2=5,且an

4、bn+1=anbn+an+1. (1)求數(shù)列{an}的通項公式; (2)求數(shù)列{bn}的前n項和. 8.(2019黑龍江哈爾濱第三中學高三上學期期中考試)已知數(shù)列{an}中,a1=32且an=12(an-1+n+1)(n≥2,n∈N*). (1)求a2,a3,并證明{an-n}是等比數(shù)列; (2)設bn=2n·an,求數(shù)列{bn}的前n項和Sn. 參考答案 專題突破練13 等差、等比 數(shù)列的綜合問題 1.解(1)設等差數(shù)列{an}的公差為d. 因為S5=S6,所以a6=a3+3d=0. 因為a

5、3=-6,所以d=2,a1=-10. 所以an=2n-12. (2)設等比數(shù)列{bn}的公比為q. 由(1)可知,b1=-8,b2=-24, 所以q=3. 故數(shù)列{bn}的前n項和為-8(1-3n)1-3=4(1-3n). 2.(1)解因為a1=1,an+1=e·an(n∈N*), 所以數(shù)列{an}是以1為首項,e為公比的等比數(shù)列, 所以an=en-1. (2)證明由(1)知,lnan=lnen-1=n-1, 所以Tn=0+1+2+…+(n-1)=n(n-1)2, 所以1T2+1T3+…+1Tn =21×2+22×3+23×4+…+2n(n-1) =21-12+12-

6、13+13-14+…+1n-1-1n=21-1n. 因為1n>0,所以1-1n<1.所以21-1n<2. 即1T2+1T3+…+1Tn<2. 3.解(1)設等差數(shù)列{an}的公差為d,d≠0. ∵a2,a3,a6成等比數(shù)列, ∴a32=a2·a6, 即(1+d)2=1+4d, 解得d=2或d=0(舍去d=0), ∴an=a2+(n-2)d=2n-3. (2)∵an=2n-3,∴Sn=n(a1+an)2=n(a2+an-1)2=n2-2n. 依題意有n2-2n>35,解得n>7. 故使Sn>35成立的n的最小值為8. 4.解(1)∵3S1,2S2,S3成等差數(shù)列,∴4S2

7、=3S1+S3, ∴4(a1+a2)=3a1+(a1+a2+a3), 即a3=3a2,∴公比q=3, ∴an=a1qn-1=3n. (2)由(1)知,bn=log3an=log33n=n, ∵b2n-1b2n-b2nb2n+1=(2n-1)·2n-2n(2n+1)=-4n, ∴Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1) =-4(1+2+…+n) =-4×n(n+1)2=-2n2-2n. 5.解(1)由函數(shù)f(x)=log3(ax+b)的圖象經過點A(2,1)和B(5,2), 得log3(2a+b)=1,log3(5a+b

8、)=2,解得a=2,b=-1. 所以an=2n-1,n∈N*. (2)由(1)知數(shù)列{an}為以1為首項,2為公差的等差數(shù)列, 所以Sn=n+n(n-1)2×2=n2, 得bn=2n+2Sn=2n+2n. ∴Tn=(2×1+21)+(2×2+22)+(2×3+23)+…+(2×n+2n) =2×(1+2+3+…+n)+(21+22+23+…+2n) =2×(1+n)n2+2(2n-1)2-1 =2n+1+n2+n-2. 6.解(1)由已知可得q+3+a2=12,q=3+a2q, 解得q=3或q=-4(舍去負值),a2=6. ∴an=3n,bn=3n-1. (2)∵Sn=

9、3n(n+1)2, ∴Sbn=32bn(bn+1)=32(bn2+bn), ∴Tn=Sb1+Sb2+Sb3+Sb4+…+Sbn =32(b1+b2+…+bn)+(b12+b22+…+bn2)=32(30+31+…+3n-1)+(30+32+…+32n-2)= =321-3n1-3+1-32n1-32 =32n+116+3n+14-1516. 7.解(1)把n=1代入已知等式得a1b2=a1b1+a2,∴a2=a1b2-a1b1=3a1. ∴{an}是首項為1,公比為3的等比數(shù)列,即an=3n-1. (2)由已知得bn+1-bn=an+1an=3, ∴{bn}是首項為2,公差為

10、3的等差數(shù)列,其通項公式為bn=3n-1, ∴Sn=n(b1+bn)2=n(2+3n-1)2=3n2+n2. 8.解(1)由題意,可知: a2=12(a1+2+1)=1232+2+1=94, a3=12(a2+3+1)=1294+3+1=258. ①當n=1時,a1-1=32-1=12, ②當n≥2時,an-n=12(an-1+n+1)-n=12an-1+12n+12-n=12an-1-12n+12=12(an-1-n+1)=12[an-1-(n-1)]. ∴數(shù)列{an-n}是以12為首項,12為公比的等比數(shù)列. (2)由(1)可知, an-n=12n, ∴an=n+12n,n∈N*. ∴bn=2n·an=2n·n+12n=n·2n+2n·12n=n·2n+1. ∴Sn=b1+b2+b3+…+bn=(1·21+1)+(2·22+1)+(3·23+1)+…+(n·2n+1), ∴Sn=1·21+2·22+3·23+…+n·2n+n,③ 2Sn=1·22+2·23+…+(n-1)·2n+n·2n+1+2n,④ 由③-④,可得: -Sn=1·21+1·22+1·23+…+1·2n-n·2n+1+n-2n=2-2n+11-2-n·2n+1-n =(1-n)·2n+1-n-2, ∴Sn=(n-1)·2n+1+n+2. 12

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!