(浙江專用)2021版新高考數(shù)學一輪復習 第十章 計數(shù)原理與古典概率 1 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理高效演練分層突破

上傳人:Sc****h 文檔編號:119961583 上傳時間:2022-07-16 格式:DOC 頁數(shù):6 大?。?.37MB
收藏 版權申訴 舉報 下載
(浙江專用)2021版新高考數(shù)學一輪復習 第十章 計數(shù)原理與古典概率 1 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理高效演練分層突破_第1頁
第1頁 / 共6頁
(浙江專用)2021版新高考數(shù)學一輪復習 第十章 計數(shù)原理與古典概率 1 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理高效演練分層突破_第2頁
第2頁 / 共6頁
(浙江專用)2021版新高考數(shù)學一輪復習 第十章 計數(shù)原理與古典概率 1 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理高效演練分層突破_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(浙江專用)2021版新高考數(shù)學一輪復習 第十章 計數(shù)原理與古典概率 1 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理高效演練分層突破》由會員分享,可在線閱讀,更多相關《(浙江專用)2021版新高考數(shù)學一輪復習 第十章 計數(shù)原理與古典概率 1 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理高效演練分層突破(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理 [基礎題組練] 1.從集合{0,1,2,3,4,5,6}中任取兩個互不相等的數(shù)a,b組成復數(shù)a+bi,其中虛數(shù)的個數(shù)是(  ) A.30           B.42 C.36 D.35 解析:選C.因為a+bi為虛數(shù),所以b≠0,即b有6種取法,a有6種取法,由分步乘法計數(shù)原理知可以組成6×6=36個虛數(shù). 2.用10元、5元和1元來支付20元錢的書款,不同的支付方法有(  ) A.3種 B.5種 C.9種 D.12種 解析:選C.只用一種幣值有2張10元,4張5元,20張1元,共3種; 用兩種幣值的有1張10元,2

2、張5元;1張10元,10張1元;3張5元,5張1元;2張5元,10張1元;1張5元,15張1元,共5種; 用三種幣值的有1張10元,1張5元,5張1元,共1種. 由分類加法計數(shù)原理得,共有3+5+1=9(種). 3.某電話局的電話號碼為139××××××××,若前六位固定,最后五位數(shù)字是由6或8組成的,則這樣的電話號碼的個數(shù)為(  ) A.20 B.25 C.32 D.60 解析:選C.依據(jù)題意知,最后五位數(shù)字由6或8組成,可分5步完成,每一步有2種方法,根據(jù)分步乘法計數(shù)原理,符合題意的電話號碼的個數(shù)為25=32. 4.用數(shù)字1,2,3,4,5組成沒有重復數(shù)字的五位數(shù),其

3、中偶數(shù)的個數(shù)為(  ) A.24 B.48 C.60 D.72 解析:選B.先排個位,再排十位,百位,千位,萬位,依次有2,4,3,2,1種排法,由分步乘法計數(shù)原理知偶數(shù)的個數(shù)為2×4×3×2×1=48. 5.已知兩條異面直線a,b上分別有5個點和8個點,則這13個點可以確定不同的平面?zhèn)€數(shù)為(  ) A.40 B.16 C.13 D.10 解析:選C.分兩類情況討論:第1類,直線a分別與直線b上的8個點可以確定8個不同的平面;第2類,直線b分別與直線a上的5個點可以確定5個不同的平面.根據(jù)分類加法計數(shù)原理知,共可以確定8+5=13個不同的平面. 6.如圖所示,小

4、圓圈表示網(wǎng)絡的結點,結點之間的線段表示它們有網(wǎng)線相連,連線標注的數(shù)字,表示該段網(wǎng)線單位時間內可以通過的最大信息量,現(xiàn)從結點A向結點B傳遞信息,信息可以從分開不同的路線同時傳遞,則單位時間內傳遞的最大信息量為(  ) A.26 B.20 C.24 D.19 解析:選D.因為信息可以從分開不同的路線同時傳遞,由分類加法計數(shù)原理,完成從A向B傳遞有四種辦法:12→5→3;12→6→4;12→6→7;12→8→6.故單位時間內傳遞的最大信息量為四條不同網(wǎng)線上信息量的和:3+4+6+6=19. 7.如圖所示,使電路接通,開關不同的開閉方式有(  ) A.11種 B.20種 C

5、.21種 D.12種 解析:選C.電路接通,則每一個并聯(lián)電路中至少有一個開關閉合,再利用乘法原理求解.兩個開關并聯(lián)的電路接通方式有3種,即每個開關單獨接通共2種.兩個開關都接通有一種,所以共有3種,同理三個開關并聯(lián)的電路接通方式有7種,由乘法原理可知不同的閉合方式有3×7=21(種). 8.某市汽車牌照號碼可以上網(wǎng)自編,但規(guī)定從左到右第二個號碼只能從字母B,C,D中選擇,其他四個號碼可以從0~9這十個數(shù)字中選擇(數(shù)字可以重復),有車主第一個號碼(從左到右)只想在數(shù)字3,5,6,8,9中選擇,其他號碼只想在1,3,6,9中選擇,則他的車牌號碼可選的所有可能情況有(  ) A.180種

6、 B.360種 C.720種 D.960種 解析:選D.按照車主的要求,從左到右第一個號碼有5種選法,第二個號碼有3種選法,其余三個號碼各有4種選法.因此車牌號碼可選的所有可能情況有5×3×4×4×4=960(種). 9.直線l:+=1中,a∈{1,3,5,7},b∈{2,4,6,8}.若l與坐標軸圍成的三角形的面積不小于10,則這樣的直線的條數(shù)為(  ) A.6 B.7 C.8 D.16 解析:選B.l與坐標軸圍成的三角形的面積為 S=ab≥10,即ab≥20. 當a=1時,不滿足;當a=3時,b=8,即1條. 當a∈{5,7}時,b∈{4,6,8},此時a的

7、取法有2種,b的取法有3種,則直線l的條數(shù)為2×3=6.故滿足條件的直線的條數(shù)為1+6=7.故選B. 10.在如圖所示的五個區(qū)域中,現(xiàn)有四種顏色可供選擇,要求每一個區(qū)域只涂一種顏色,相鄰區(qū)域所涂顏色不同,則不同的涂色方法種數(shù)為(  ) A.24種 B.48種 C.72種 D.96種 解析:選C.分兩種情況: (1)A,C不同色,先涂A有4種,C有3種,E有2種,B,D有1種,有4×3×2=24(種). (2)A,C同色,先涂A有4種,E有3種,C有1種,B,D各有2種,有4×3×2×2=48(種). 綜上兩種情況,不同的涂色方法共有48+24=72(種). 11.從班委

8、會5名成員中選出3名,分別擔任班級學習委員、文娛委員與體育委員,其中甲、乙二人不能擔任文娛委員,則不同的選法共有________種(用數(shù)字作答). 解析:第一步,先選出文娛委員,因為甲、乙不能擔任,所以從剩下的3人中選1人當文娛委員,有3種選法. 第二步,從剩下的4人中選學習委員和體育委員,又可分兩步進行:先選學習委員有4種選法,再選體育委員有3種選法.由分步乘法計數(shù)原理可得,不同的選法共有3×4×3=36(種). 答案:36 12.乘積(a+b+c)(d+e+f+h)(i+j+k+l+m)展開后共有________項. 解析:由(a+b+c)(d+e+f+h)(i+j+k+l+m)

9、展開式各項都是從每個因式中選一個字母的乘積,由分步乘法計數(shù)原理可得其展開式共有3×4×5=60(項). 答案:60 13.在平面直角坐標系內,點P(a,b)的坐標滿足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素.又點P到原點的距離|OP|≥5,則這樣的點P的個數(shù)為________. 解析:依題意可知: 當a=1時,b=5,6,兩種情況; 當a=2時,b=5,6,兩種情況; 當a=3時,b=4,5,6,三種情況; 當a=4時,b=3,5,6,三種情況; 當a=5或6時,b各有五種情況. 所以共有2+2+3+3+5+5=20種情況. 答案:20 14.如圖所示,

10、在A,B間有四個焊接點,若焊接點脫落,則可能導致電路不通.今發(fā)現(xiàn)A,B之間線路不通,則焊接點脫落的不同情況有________種. 解析:采用排除法.各個焊點有2種情況,所以四個焊點共有24種可能,其中能使線路通的情況有:1,4同時通,且2和3至少有一個通時線路才能通,共有3種可能,故不通的情況共有24-3=13種情況. 答案:13 15.將4個不同小球放入3個不同的盒子,其中每個盒子都不空的放法共有________種. 解析:必有一個盒子放2個小球,將4個小球分3組,其中有2個小球為一組,另外2個小球為兩組,共有6種分組方法.然后,每一種分組的小球放入3個不同盒子,按分步乘法計數(shù)原

11、理,有3×2×1種放法,共有6×(3×2×1)=36(種)放法. 答案:36 16.如果一條直線與一個平面垂直,那么稱此直線與平面構成一個“正交線面對”.在一個正方體中,由兩個頂點確定的直線與含有四個頂點的平面構成的“正交線面對”的個數(shù)是________. 解析:分類討論:第1類,對于每一條棱,都可以與兩個側面構成“正交線面對”,這樣的“正交線面對”有2×12=24個;第2類,對于每一條面對角線,都可以與一個對角面構成“正交線面對”,這樣的“正交線面對”有12個.所以正方體中“正交線面對”共有24+12=36(個). 答案:36 17.已知集合A={最大邊長為7,且三邊長均為正整數(shù)的

12、三角形},則集合A的真子集共有________個. 解析:另外兩個邊長用x,y(x,y∈N*)表示,且不妨設1≤x≤y≤7,要構成三角形,必須x+y≥8. 當y取7時,x可取1,2,3,…,7,有7個三角形; 當y取6時,x可取2,3,…,6,有5個三角形; 當y取5時,x可取3,4,5,有3個三角形. 當y取4時,x只能取4,只有1個三角形. 所以所求三角形的個數(shù)為7+5+3+1=16.其真子集共有(216-1)個. 答案:216-1 [綜合題組練] 1.有一項活動需在3名老師,6名男同學和8名女同學中選人參加, (1)若只需一人參加,有多少種不同選法? (2)若需一名

13、老師,一名學生參加,有多少種不同選法? (3)若需老師、男同學、女同學各一人參加,有多少種不同選法? 解:(1)只需一人參加,可按老師、男同學、女同學分三類各自有3,6,8種方法,總方法數(shù)為3+6+8=17(種). (2)分兩步,先選老師共3種選法,再選學生共6+8=14種選法,由分步乘法計數(shù)原理知,總方法數(shù)為3×14=42(種). (3)老師、男、女同學各一人可分三步,每步方法依次為3,6,8種,由分步乘法計數(shù)原理知,總方法數(shù)為3×6×8=144(種). 2.同室四人各寫一張賀年卡,先集中起來,然后每人從中各拿1張別人送出的賀年卡,則4張賀年卡不同的分配方式有幾種? 解:設四個人

14、為甲、乙、丙、丁,依次寫的賀年卡為A,B,C,D. 第一步:甲有3種拿法,即拿了B,C或D. 第二步:對甲的每一種拿法,不妨設拿了乙的B卡,則乙也有3種拿法,即拿A,C或D,有3種拿法. 若乙拿了甲的A卡,則丙、丁只能是丙拿D,丁拿C. 若乙拿了丙的C卡,則丙只能拿D卡,丁拿A卡. 若乙拿了丁的D卡,則丁只能拿C卡,丙拿A卡. 所以分配方式共有3×3=9(種). 3.由數(shù)字1,2,3,4, (1)可組成多少個三位數(shù)? (2)可組成多少個沒有重復數(shù)字的三位數(shù)? (3)可組成多少個沒有重復數(shù)字,且百位數(shù)字大于十位數(shù)字,十位數(shù)字大于個位數(shù)字的三位數(shù)? 解:(1)百位數(shù)共有4種排

15、法;十位數(shù)共有4種排法;個位數(shù)共有4種排法,根據(jù)分步乘法計數(shù)原理知共可組成43=64個三位數(shù). (2)百位上共有4種排法;十位上共有3種排法;個位上共有2種排法,由分步乘法計數(shù)原理知共可排成沒有重復數(shù)字的三位數(shù)4×3×2=24(個). (3)排出的三位數(shù)分別是432、431、421、321,共4個. 4.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,則: (1)y=ax2+bx+c可以表示多少個不同的二次函數(shù)? (2)y=ax2+bx+c可以表示多少個圖象開口向上的二次函數(shù)? 解:(1)y=ax2+bx+c表示二次函數(shù)時,a的取值有5種情況,b的取值有6種情況,c的取值有6種情況,因此y=ax2+bx+c可以表示5×6×6=180個不同的二次函數(shù). (2)當y=ax2+bx+c的圖象開口向上時,a的取值有2種情況,b,c的取值均有6種情況,因此y=ax2+bx+c可以表示2×6×6=72個圖象開口向上的二次函數(shù). 6

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!