10、2,都有2-2x-logax<0恒成立,
即對(duì)于任意的實(shí)數(shù)x∈0,12,都有l(wèi)ogax>2-2x恒成立,
即對(duì)任意的實(shí)數(shù)x∈0,12,y=logax的圖像恒在y=14x的圖像的上方,∴012,∴a>14.綜上可得,141-x1,
∴x1+x2>2,∴2x1
11、+2x2>22x1+x2>2×22=4.
綜上可得,①中說(shuō)法正確,②中說(shuō)法正確,③中說(shuō)法錯(cuò)誤,④中說(shuō)法正確.
15.B [解析] 設(shè)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)分別為y=ax(a>0,a≠1),y=logbx(b>0,b≠1).若P1為“好點(diǎn)”,則P1(1,1)在y=ax的圖像上,得a=1,與a>0且a≠1矛盾;P2(1,2)顯然不在y=logbx的圖像上;P312,12在y=ax,y=logbx的圖像上時(shí),a=14,b=14;易得P4(2,2)是“好點(diǎn)”.故選B.
16.C [解析]f(x)=ln(ex)-ln(1-x)=12+lnx1-x,設(shè)P(x1,f(x1)),Q(x2,f(x2)),則f(x1)=12+lnx11-x1,f(x2)=12+lnx21-x2,依題意,得f(x1)+f(x2)=2m,x1+x2=1,所以2m=f(x1)+f(x2)=1+lnx1x2(1-x1)(1-x2)=1+lnx1x21-(x1+x2)+x1x2=1+ln1=1,可得m=12.故選C.