廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 考點規(guī)范練14 導(dǎo)數(shù)的概念及運算 文

上傳人:Sc****h 文檔編號:119221201 上傳時間:2022-07-14 格式:DOCX 頁數(shù):7 大小:1.97MB
收藏 版權(quán)申訴 舉報 下載
廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 考點規(guī)范練14 導(dǎo)數(shù)的概念及運算 文_第1頁
第1頁 / 共7頁
廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 考點規(guī)范練14 導(dǎo)數(shù)的概念及運算 文_第2頁
第2頁 / 共7頁
廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 考點規(guī)范練14 導(dǎo)數(shù)的概念及運算 文_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 考點規(guī)范練14 導(dǎo)數(shù)的概念及運算 文》由會員分享,可在線閱讀,更多相關(guān)《廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 考點規(guī)范練14 導(dǎo)數(shù)的概念及運算 文(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、考點規(guī)范練14 導(dǎo)數(shù)的概念及運算 一、基礎(chǔ)鞏固 1.已知函數(shù)f(x)=3x+1,則limΔx→0f(1-Δx)-f(1)Δx的值為(  )                     A.-13 B.13 C.23 D.0 答案A 解析limΔx→0f(1-Δx)-f(1)Δx=-limΔx→0f(1-Δx)-f(1)-Δx =-f'(1)=-13×1-23=-13. 2.已知曲線y=ln x的切線過原點,則此切線的斜率為(  ) A.e B.-e C.1e D.-1e 答案C 解析由題意可得y=lnx的定義域為(0,+∞),且y'=1x. 設(shè)切點為(x0,lnx0),則切

2、線方程為y-lnx0=1x0(x-x0). 因為切線過點(0,0),所以-lnx0=-1,解得x0=e,故此切線的斜率為1e. 3.已知函數(shù)f(x)在R上滿足f(2-x)=2x2-7x+6,則曲線y=f(x)在點(1,f(1))處的切線方程是(  ) A.y=2x-1 B.y=x C.y=3x-2 D.y=-2x+3 答案C 解析令x=1,得f(1)=1;令2-x=t,可得x=2-t,代入f(2-x)=2x2-7x+6得f(t)=2(2-t)2-7(2-t)+6,化簡整理得f(t)=2t2-t,即f(x)=2x2-x,∴f'(x)=4x-1, ∴f(1)=1,f'(1)=3,∴所求

3、切線方程為y-1=3(x-1), 即y=3x-2. 4. 已知y=f(x)是可導(dǎo)函數(shù),如圖,直線y=kx+2是曲線y=f(x)在x=3處的切線,令g(x)=xf(x),g'(x)是g(x)的導(dǎo)函數(shù),則g'(3)=(  ) A.-1 B.0 C.2 D.4 答案B 解析由題圖可知曲線y=f(x)在x=3處切線的斜率等于-13,故f'(3)=-13. ∵g(x)=xf(x),∴g'(x)=f(x)+xf'(x), ∴g'(3)=f(3)+3f'(3). 又由題圖可知f(3)=1,∴g'(3)=1+3×-13=0. 5.曲線f(x)=x3-x+3在點P處的切線平行于直線y=

4、2x-1,則點P的坐標(biāo)為(  ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 答案C 解析∵f(x)=x3-x+3,∴f'(x)=3x2-1. 設(shè)點P(x,y),則f'(x)=2, 即3x2-1=2,解得x=1或x=-1, 故P(1,3)或(-1,3). 經(jīng)檢驗,點(1,3),(-1,3)均不在直線y=2x-1上,符合題意.故選C. 6.已知直線y=kx+1與曲線y=x3+ax+b相切于點A(1,2),則ab等于(  ) A.-8 B.-6 C.-1 D.5 答案A 解析由題意得y=kx+1過點A(1,2),故2=k+1,即k=1.

5、 ∵y'=3x2+a,且直線y=kx+1與曲線y=x3+ax+b相切于點A(1,2), ∴k=3+a,即1=3+a,∴a=-2. 將點A(1,2)代入曲線方程y=x3+ax+b,可解得b=3, 即ab=(-2)3=-8.故選A. 7.若函數(shù)y=f(x)的圖象上存在兩點,使得函數(shù)的圖象在這兩點處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是(  ) A.y=sin x B.y=ln x C.y=ex D.y=x3 答案A 解析設(shè)曲線上兩點P(x1,y1),Q(x2,y2), 則由導(dǎo)數(shù)幾何意義可知,兩條切線的斜率分別為k1=f'(x1),k2=f'(x2).

6、 若函數(shù)具有T性質(zhì),則k1·k2=f'(x1)·f'(x2)=-1. A項,f'(x)=cosx,顯然k1·k2=cosx1·cosx2=-1有無數(shù)組解,所以該函數(shù)具有性質(zhì)T; B項,f'(x)=1x(x>0),顯然k1·k2=1x1·1x2=-1無解,故該函數(shù)不具有性質(zhì)T; C項,f'(x)=ex>0,顯然k1·k2=ex1·ex2=-1無解,故該函數(shù)不具有性質(zhì)T; D項,f'(x)=3x2≥0,顯然k1·k2=3x12×3x22=-1無解,故該函數(shù)不具有性質(zhì)T. 綜上,選A. 8.若點P是曲線y=x2-ln x上任意一點,則點P到直線y=x-2的距離的最小值為(  ) A.

7、1 B.2 C.22 D.3 答案B 解析因為定義域為(0,+∞),所以y'=2x-1x,令2x-1x=1,解得x=1,則曲線在點P(1,1)處的切線方程為x-y=0,所以兩平行線間的距離為d=22=2.故所求的最小值為2. 9.(2018天津,文10)已知函數(shù)f(x)=exln x,f'(x)為f(x)的導(dǎo)函數(shù),則f'(1)的值為      .? 答案e 解析∵f(x)=exlnx,∴f'(x)=exlnx+exx. ∴f'(1)=eln1+e1=e. 10.曲線y=log2x在點(1,0)處的切線與坐標(biāo)軸所圍三角形的面積等于     .? 答案12log2e 解析∵y'=

8、1xln2,∴k=1ln2,∴切線方程為y=1ln2(x-1), ∴所圍三角形的面積為S=12×1×1ln2=12ln2=12log2e. 11.(2018甘肅天水月考)設(shè)函數(shù)f(x)=g(x)+x2,曲線y=g(x)在點(1,g(1))處的切線方程為y=2x+1,則曲線y=f(x)在點(1,f(1))處切線的斜率為     .? 答案4 解析由導(dǎo)數(shù)的幾何意義及條件,得g'(1)=2, ∵函數(shù)f(x)=g(x)+x2, ∴f'(x)=g'(x)+2x, ∴f'(1)=g'(1)+2=4, ∴曲線y=f(x)在點(1,f(1))處切線的斜率為4. 12.若函數(shù)f(x)=12x2

9、-ax+ln x存在垂直于y軸的切線,則實數(shù)a的取值范圍是     .? 答案[2,+∞) 解析∵f(x)=12x2-ax+lnx, ∴f'(x)=x-a+1x. ∵f(x)存在垂直于y軸的切線, ∴f'(x)存在零點,∴x+1x-a=0有解, ∴a=x+1x≥2(x>0). 二、能力提升 13.若函數(shù)y=f(x),y=g(x)的導(dǎo)函數(shù)的圖象如圖所示,則y=f(x),y=g(x)的圖象可能是(  ) 答案D 解析由y=f'(x)的圖象知y=f'(x)在(0,+∞)內(nèi)單調(diào)遞減,說明函數(shù)y=f(x)的切線的斜率在(0,+∞)內(nèi)也單調(diào)遞減,故可排除A,C. 又由圖象知y

10、=f'(x)與y=g'(x)的圖象在x=x0處相交, 說明y=f(x)與y=g(x)的圖象在x=x0處的切線的斜率相同,故可排除B.故選D. 14.若存在過點(1,0)的直線與曲線y=x3和y=ax2+154x-9都相切,則a等于(  ) A.-1或-2564 B.-1或214 C.-74或-2564 D.-74或7 答案A 解析因為y=x3,所以y'=3x2. 設(shè)過點(1,0)的直線與y=x3相切于點(x0,x03), 則在該點處的切線斜率為k=3x02,所以切線方程為y-x03=3x02(x-x0),即y=3x02x-2x03. 又點(1,0)在切線上, 則x0=0或x

11、0=32. 當(dāng)x0=0時,由y=0與y=ax2+154x-9相切, 可得a=-2564; 當(dāng)x0=32時,由y=274x-274與y=ax2+154x-9相切,可得a=-1. 15.(2018安徽六安模擬)給出定義:設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f'(x)的導(dǎo)函數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.已知函數(shù)f(x)=3x+4sin x-cos x的“拐點”是M(x0,f(x0)),則點M(  ) A.在直線y=-3x上 B.在直線y=3x上 C.在直線y=-4x上 D.在直線y=4x上 答案B 解

12、析由題意,知f'(x)=3+4cosx+sinx,f″(x)=-4sinx+cosx, 由f″(x0)=0,知-4sinx0+cosx0=0, 即4sinx0-cosx0=0, 所以f(x0)=3x0+4sinx0-cosx0=3x0, 即點M(x0,3x0),顯然在直線y=3x上.故選B. 16.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=ex+x2+1,則函數(shù)h(x)=2f(x)-g(x)在點(0,h(0))處的切線方程是        .? 答案x-y+4=0 解析∵f(x)-g(x)=ex+x2+1,且f(x)是偶函數(shù),g(x)是奇函數(shù),

13、 ∴f(-x)-g(-x)=f(x)+g(x)=e-x+x2+1. ∴f(x)=ex+e-x+2x2+22,g(x)=e-x-ex2. ∴h(x)=2f(x)-g(x)=ex+e-x+2x2+2-e-x-ex2 =32ex+12e-x+2x2+2. ∴h'(x)=32ex-12e-x+4x, 即h'(0)=32-12=1. 又h(0)=4,∴切線方程為x-y+4=0. 三、高考預(yù)測 17.設(shè)曲線y=xex+x2在原點處的切線與直線x+ay+1=0垂直,則a=     .? 答案1 解析由y=xex+x2得y'=ex+xex+2x, 在原點處的切線的斜率k1=e0+0·e0+0=1, 直線x+ay+1=0的斜率k2=-1a, 由題意知k1k2=-1a×1=-1?a=1. 7

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!