2019高考數(shù)學(xué)二輪復(fù)習 第一篇 微型專題 微專題21 坐標系與參數(shù)方程練習 理
《2019高考數(shù)學(xué)二輪復(fù)習 第一篇 微型專題 微專題21 坐標系與參數(shù)方程練習 理》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)二輪復(fù)習 第一篇 微型專題 微專題21 坐標系與參數(shù)方程練習 理(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、21 坐標系與參數(shù)方程 1.已知動點P,Q都在曲線C:x=2cost,y=2sint(t為參數(shù))上,對應(yīng)參數(shù)分別為t=α與t=2α(0<α<2π),M為PQ的中點. (1)求點M的軌跡的參數(shù)方程; (2)將點M到坐標原點的距離d表示為α的函數(shù),并判斷點M的軌跡是否過坐標原點. 解析? (1)由題意得P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α),故點M的軌跡的參數(shù)方程為x=cosα+cos2α,y=sinα+sin2α(α為參數(shù),0<α<2π). (2)點M到坐標原點的距離d=x2+y2=2+2
2、cosα(0<α<2π), 當α=π時,d=0,故點M的軌跡過坐標原點. 2.已知圓O1,圓O2的極坐標方程分別為ρ=4cos θ,ρ=-sin θ. (1)把圓O1和圓O2的極坐標方程化為直角坐標方程; (2)求經(jīng)過圓O1與圓O2的兩個交點的直線的直角坐標方程,并將其化為極坐標方程. 解析? (1)由ρ=4cos θ得ρ2=4ρcos θ,將ρcosθ=x,ρ2=x2+y2代入上式,可得x2+y2=4x,所以圓O1的直角坐標方程為x2+y2-4x=0. 由ρ=-sin θ得ρ2=-ρsinθ,將ρ2=x2+y2,ρsin θ=y代入上式,可得x2+y2=-y,所以圓O2的直角坐標
3、方程為x2+y2+y=0. (2)由x2+y2-4x=0及x2+y2+y=0,兩式相減得4x+y=0, 所以經(jīng)過圓O1與圓O2的兩個交點的直線的直角坐標方程為4x+y=0. 將4x+y=0化為極坐標方程為4ρcos θ+ρsinθ=0,即tan θ=-4. 3.在平面直角坐標系xOy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,已知直線l 的參數(shù)方程為x=255t,y=2+55t(t為參數(shù)),曲線C的極坐標方程為ρcos2θ=8sin θ. (1)求曲線C的直角坐標方程,并指出該曲線是什么曲線; (2)若直線l與曲線C的交點分別為M,N,求|MN|. 解析? (1)因為c
4、osρ2θ=8sin θ,所以cosρ22θ=8ρsin θ,即x2=8y, 所以曲線C表示焦點坐標為(0,2),對稱軸為y軸的拋物線. (2)易知直線l過拋物線的焦點(0,2),且參數(shù)方程為x=255t,y=2+55t(t為參數(shù)), 代入曲線C的直角坐標方程,得t2-25t-20=0,設(shè)M,N對應(yīng)的參數(shù)分別為t1,t2, 所以t1+t2=25,t1t2=-20. 所以|MN|=|t1-t2|=(t1+t2)2-4t1t2=10. 4.以平面直角坐標系的原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C1的極坐標方程為ρsinθ-π4=2,曲線C2的極坐標方程為ρ=2cosθ-
5、π4. (1)寫出曲線C1的直角坐標方程和曲線C2的參數(shù)方程; (2)設(shè)M,N分別是曲線C1,C2上的兩個動點,求|MN|的最小值. 解析? (1)依題意得,ρsinθ-π4=22ρsin θ-22ρcos θ=2, 所以曲線C1的直角坐標方程為x-y+2=0. 由曲線C2的極坐標方程得ρ2=2ρcosθ-π4=2ρcos θ+2ρsin θ, 所以曲線C2的直角坐標方程為x2+y2-2x-2y=0,即x-222+y-222=1, 所以曲線C2的參數(shù)方程為x=22+cosθ,y=22+sinθ(θ為參數(shù)). (2)由(1)知,圓C2的圓心22,22到直線x-y+2=0的距離
6、d=22-22+22=2. 又半徑r=1,所以|MN|min=d-r=2-1. 能力1 ? 能用曲線極坐標方程解決問題 【例1】 在平面直角坐標系xOy中,圓C的圓心為0,12,半徑為12,現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系. (1)求圓C的極坐標方程; (2)設(shè)M,N是圓C上兩個動點,且滿足∠MON=2π3,求OM+ON的最小值. 解析? (1)由題意得圓C的直角坐標方程為x2+y-122=14,即x2+y2-y=0, 化為極坐標方程為ρ2-ρsin θ=0,整理可得ρ=sin θ. (2)設(shè)Mρ1,θ,Nρ2,θ+2π3, 則|OM|+
7、ON=ρ1+ρ2=sin θ+sinθ+2π3=12sin θ+32cos θ=sinθ+π3. 由0≤θ≤π,0≤θ+2π3≤π,得0≤θ≤π3,所以π3≤θ+π3≤2π3,故32≤sinθ+π3≤1, 即OM+ON的最小值為32. 由極坐標方程求與曲線有關(guān)的交點、距離等幾何問題時,若能用極坐標系求解,可直接用極坐標求解;若不能直接用極坐標解決,可先轉(zhuǎn)化為直角坐標方程,然后求解. 已知曲線C:ρ=-2sin θ. (1)求曲線C的直角坐標方程; (2)若曲線C與直線x+y+a=0有公共點,求實數(shù)a的取值范圍. 解析? (1)由ρ=-2sin θ可得 ρ2=-2ρsi
8、n θ,即x2+y2=-2y, ∴曲線C的直角坐標方程為x2+(y+1)2=1. (2)由圓C與直線有公共點,得圓心C到直線的距離d=0-1+a2≤1,解得1-2≤a≤1+2. ∴實數(shù)a的取值范圍為[1-2,1+2]. 能力2 ? 會用參數(shù)方程解決問題 【例2】 在平面直角坐標系xOy中,曲線C的參數(shù)方程為x=2cosθ,y=4sinθ(θ為參數(shù)),直線l的參數(shù)方程為x=1+tcosα,y=2+tsinα(t為參數(shù)). (1)求曲線C和直線l的普通方程; (2)若曲線C截直線l所得線段的中點坐標為(1,2),求l的斜率. 解析? (1)曲線C的普通方程為x2
9、4+y216=1. 當cos α≠0時,l的普通方程為y=xtanα+2-tan α; 當cos α=0時,l的普通方程為x=1. (2)將l的參數(shù)方程代入C的直角坐標方程,整理得關(guān)于t的方程, 即(1+3cos2α)t2+4(2cos α+sin α)t-8=0. ① 因為曲線C截直線l所得線段的中點坐標(1,2)在C內(nèi),所以①有兩個解,設(shè)為t1,t2,則t1+t2=0. 又由①得t1+t2=-4(2cosα+sinα)1+3cos2α,故2cos α+sin α=0,于是直線l的斜率k=tan α=-2. 過點M0(x0,y0),傾斜角為α的直線l的參數(shù)方程是x=x0
10、+tcosα,y=y0+tsinα(t是參數(shù)).注意以下結(jié)論的應(yīng)用: (1)|M1M2|=|t1-t2|; (2)若線段M1M2的中點M所對應(yīng)的參數(shù)為t,則t=t1+t22,中點M到定點M0的距離|MM0|=|t|=t1+t22; (3)若M0為線段M1M2的中點,則t1+t2=0. 在平面直角坐標系xOy中,曲線M的參數(shù)方程為x=2+rcosθ,y=1+rsinθ(θ為參數(shù),r>0),曲線N的參數(shù)方程為x=255t,y=1+55t(t為參數(shù),且t≠0). (1)以曲線N上的點與原點O連線的斜率k為參數(shù),寫出曲線N的參數(shù)方程; (2)若曲線M與N的兩個交點為A,B,直線OA與直
11、線OB的斜率之積為43,求r的值. 解析? (1)將x=255t,y=1+55t消去參數(shù)t,得x-2y+2=0(x≠0),由題意可知k≠12. 由x-2y+2=0,y=kxk≠12,得x=22k-1,y=2k2k-1k≠12. 故曲線N的參數(shù)方程為x=22k-1,y=2k2k-1k為參數(shù), 且k≠12. (2)由曲線M的參數(shù)方程得其普通方程為(x-2)2+(y-1)2=r2, 將x=22k-1,y=2k2k-1代入上式, 整理得(16-4r2)k2+(4r2-32)k+17-r2=0. 因為直線OA與直線OB的斜率之積為43,所以17-r216-4r2=43,解得r2=1.
12、又r>0,所以r=1. 將r=1代入(16-4r2)k2+(4r2-32)k+17-r2=0,得12k2-28k+16=0,滿足Δ>0,故r=1. 能力3 ? 會解極坐標與參數(shù)方程的綜合問題 【例3】 在平面直角坐標系xOy中,曲線C1的參數(shù)方程為x=a-22t,y=1+22t(t為參數(shù),a∈R),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρcos2θ+2cos θ-ρ=0. (1)寫出曲線C1的普通方程和曲線C2的直角坐標方程; (2)已知點P(a,1),曲線C1和曲線C2交于A,B兩點,且|PA|·|PB|=4,求實數(shù)a的值. 解析
13、? (1)由C1的參數(shù)方程消去t得其普通方程為x+y-a-1=0. 由C2的極坐標方程得ρ2cos2θ+2ρcos θ-ρ2=0,所以C2的直角坐標方程為y2=2x. (2)將曲線C1的參數(shù)方程代入曲線C2:y2=2x,得t2+42t+2(1-2a)=0, 由Δ>0得a>-32. 設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2, 則t1t2=2(1-2a). 由題意得|PA|·|PB|=|t1t2|=|2(1-2a)|=4, 解得a=-12或a=32,滿足Δ>0, 所以實數(shù)a的值為-12或32. 涉及參數(shù)方程和極坐標方程的綜合題,求解的一般方法是分別化為普通方程和直角坐標方程后求
14、解.當然,還要結(jié)合題目本身特點,確定選擇何種方程方便. 在平面直角坐標系xOy中,曲線C1的參數(shù)方程為x=2+25cosα,y=4+25sinα(α為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線C2的極坐標方程為θ=π3(ρ∈R). (1)求C1的極坐標方程和C2的直角坐標方程; (2)若直線C3的極坐標方程為θ=π6(ρ∈R),設(shè)C2與C1的交點為O,M,C3與C1的交點為O,N,求△OMN的面積. 解析? (1)將曲線C1的參數(shù)方程消去參數(shù)α,得其普通方程為(x-2)2+(y-4)2=20,即x2+y2-4x-8y=0. 把x=ρcosθ,y=ρsinθ代
15、入方程得ρ2-4ρcos θ-8ρsin θ=0, 所以C1的極坐標方程為ρ=4cos θ+8sin θ. 由直線C2的極坐標方程得其直角坐標方程為y=3x. (2)設(shè)M(ρ1,θ1),N(ρ2,θ2),分別將θ1=π3,θ2=π6代入ρ=4cos θ+8sin θ, 得ρ1=2+43,ρ2=4+23. 則△OMN的面積S=12ρ1ρ2sin(θ1-θ2) =12×(2+43)×(4+23)×sinπ6=8+53. 1.在極坐標系中,極點為O,已知曲線C1:ρ=2,曲線C2:ρsinθ-π4=2. (1)試判斷曲線C1與曲線C2的位置關(guān)系; (2)若曲線C1與曲線C2
16、交于A,B兩點,求過點C(1,0)且與直線AB平行的直線l的極坐標方程. 解析? (1)∵ρ=2,∴x2+y2=4. 由ρsinθ-π4=2,可得ρsinθ-ρcosθ=2,即x-y+2=0. 圓心(0,0)到直線x-y+2=0的距離d=22=2<2,∴曲線C1與曲線C2相交. (2)∵曲線C2的斜率為1,∴過點(1,0)且與曲線C2平行的直線l的直角坐標方程為y=x-1, ∴直線l的極坐標方程為ρsinθ=ρcosθ-1,即ρcosθ+π4=22. 2.已知曲線C的參數(shù)方程為x=3cosθ,y=2sinθ(θ為參數(shù)),在同一平面直角坐標系中,將曲線C經(jīng)過伸縮變換x'=13x,y'
17、=12y后得到曲線C'. (1)求曲線C'的普通方程; (2)若點A在曲線C'上,點B(3,0),當點A在曲線C'上運動時,求AB中點P的軌跡方程. 解析? (1)將x=3cosθ,y=2sinθ代入x'=13x,y'=12y,得C'的參數(shù)方程為x'=cosθ,y'=sinθ, 所以曲線C'的普通方程為x2+y2=1. (2)設(shè)P(x,y),A(x0,y0),因為點B(3,0),且AB的中點為P,所以x0=2x-3,y0=2y. 又點A在曲線C'上,代入C'的普通方程x2+y2=1,得(2x-3)2+(2y)2=1, 所以動點P的軌跡方程為x-322+y2=14. 3.已知直線
18、l的參數(shù)方程為x=1+12t,y=3+3t(t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為sin θ-3ρcos2θ=0. (1)求直線l的普通方程和曲線C的直角坐標方程; (2)寫出直線l與曲線C交點的一個極坐標. 解析? (1)由x=1+12t,y=3+3t消去參數(shù)t,得y=23x-3,即直線l的普通方程為y=23x-3. ∵sin θ-3ρcos2θ=0,∴ρsin θ-3ρ2cos2θ=0,得y-3x2=0, 即曲線C的直角坐標方程為y=3x2. (2)將x=1+12t,y=3+3t代入y=3x2,得3+3t-31+12t2=0,解得t=
19、0, ∴交點坐標為(1,3), ∴交點的一個極坐標為2,π3. 4.在平面直角坐標系xOy中,直線l的參數(shù)方程為x=-1+22t,y=1+22t(t為參數(shù)),圓C的直角坐標方程為(x-2)2+(y-1)2=5.以原點O為極點,x軸正半軸為極軸建立極坐標系. (1)求直線l及圓C的極坐標方程; (2)若直線l與圓C交于A,B兩點,求cos∠AOB的值. 解析? (1)由直線l的參數(shù)方程x=-1+22t,y=1+22t得其普通方程為y=x+2, ∴直線l的極坐標方程為ρsinθ=ρcosθ+2,即ρsinθ-ρcosθ=2. 又∵圓C的方程為(x-2)2+(y-1)2=5, 將x
20、=ρcosθ,y=ρsinθ代入并化簡得ρ=4cos θ+2sin θ, ∴圓C的極坐標方程為ρ=4cos θ+2sin θ. (2)將ρsinθ-ρcosθ=2與ρ=4cos θ+2sin θ聯(lián)立, 得(4cos θ+2sin θ)(sin θ-cos θ)=2, 整理得sin θcosθ=3cos2θ,∴θ=π2或tan θ=3. 不妨記點A對應(yīng)的極角為π2,點B對應(yīng)的極角為θ,且tan θ=3. ∴cos∠AOB=cosπ2-θ=sin θ=31010. 5.在平面直角坐標系xOy中,圓C1的參數(shù)方程為x=2+2cosα,y=2sinα(α為參數(shù)).以平面直角坐標系的
21、原點O為極點,x軸的正半軸為極軸建立極坐標系,直線C2的極坐標方程為ρsinθ=3. (1)求圓C1圓心的極坐標; (2)設(shè)C1與C2的交點為A,B,求△AOB的面積. 解析? (1)由曲線C1的參數(shù)方程x=2+2cosα,y=2sinα(α為參數(shù)),消去參數(shù),得C1的直角坐標方程為x2-4x+y2=0, ∴C1的圓心坐標(2,0)在x軸的正半軸上,∴圓心的極坐標為(2,0). (2)由C1的直角坐標方程得其極坐標方程為ρ=4cos θ(ρ>0). 由方程組ρ=4cosθ,ρsinθ=3得4sin θcosθ=3,解得sin 2θ=32. ∴θ=kπ+π6(k∈Z)或θ=kπ+π
22、3(k∈Z), ∴ρ=23或ρ=2. ∴C1和C2交點的極坐標為A23,kπ+π6,B2,kπ+π3(k∈Z). ∴S△AOB=12|AO||BO|sin∠AOB=12×23×2×sinπ6=3. 6.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為x=3+2cosα,y=1+2sinα(α為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.在極坐標系中有射線l:θ=π4(ρ≥0)和曲線C2:ρ(sin θ+2cos θ)=ρ2cos2θ+m. (1)判斷射線l和曲線C1公共點的個數(shù); (2)若射線l與曲線C2 交于A,B兩點,且滿足|OA|=|AB|,求實數(shù)m的值. 解
23、析? (1)由題意得射線l的直角坐標方程為y=x(x≥0),曲線C1是以(3,1)為圓心,2為半徑的圓,其直角坐標方程為(x-3)2+(y-1)2=2.
聯(lián)立y=x(x≥0),(x-3)2+(y-1)2=2,解得x=2,y=2,
故射線l與曲線C1有一個公共點(2,2).
(2)將θ=π4代入曲線C2的方程,
得ρsinπ4+2cosπ4=ρ2cos2π4+m,
即ρ2-32ρ+2m=0.
由題知Δ=(32)2-8m>0,m>0,解得0
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑施工重大危險源安全管理制度
- 安全培訓(xùn)資料:典型建筑火災(zāi)的防治基本原則與救援技術(shù)
- 企業(yè)雙重預(yù)防體系應(yīng)知應(yīng)會知識問答
- 8 各種煤礦安全考試試題
- 9 危險化學(xué)品經(jīng)營單位安全生產(chǎn)管理人員模擬考試題庫試卷附答案
- 加壓過濾機司機技術(shù)操作規(guī)程
- 樹脂砂混砂工藝知識總結(jié)
- XXXXX現(xiàn)場安全應(yīng)急處置預(yù)案
- 某公司消防安全檢查制度總結(jié)
- 1 煤礦安全檢查工(中級)職業(yè)技能理論知識考核試題含答案
- 4.燃氣安全生產(chǎn)企業(yè)主要負責人模擬考試題庫試卷含答案
- 工段(班組)級安全檢查表
- D 氯化工藝作業(yè)模擬考試題庫試卷含答案-4
- 建筑起重司索信號工安全操作要點
- 實驗室計量常見的30個問問答題含解析