《2019高考數學大二輪復習 專題1 集合與常用邏輯用語、不等式 第2講 不等式真題押題精練 文》由會員分享,可在線閱讀,更多相關《2019高考數學大二輪復習 專題1 集合與常用邏輯用語、不等式 第2講 不等式真題押題精練 文(4頁珍藏版)》請在裝配圖網上搜索。
1、第2講 不等式
1. (2018·高考天津卷)設x∈R,則“x3>8”是“|x|>2”的 ( )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件
解析:由x3>8可得x>2,由|x|>2可得x>2或x<-2.
故“x3>8”是“|x|>2”的充分而不必要條件.故選A.
答案:A
2.(2017·高考全國卷Ⅲ)設x,y滿足約束條件則z=x-y的取值范圍是 ( )
A.[-3,0] B.[-3,2]
C.[0,2] D.[0,3]
解析:不等式組 表示的平面區(qū)域如圖中陰影部分所示,作出直線l0:y=x,
2、平移直線l0,當直線z=x-y過點A(2,0)時,z取得最大值2,當直線z=x-y過點B(0,3)時,z取得最小值-3,所以z=x-y的取值范圍是[-3,2],故選B.
答案:B
3.(2018·高考北京卷)能說明“若a>b,則<”為假命題的一組a,b的值依次為________.
解析:由題意知,當a=1,b=-1時,滿足a>b,但是>,故答案可以為1,-1.(答案不唯一,滿足a>0,b<0即可)
答案:1,-1(答案不唯一)
4.(2018·高考全國卷Ⅲ)若變量x,y滿足約束條件則z=x+y的最大值是________.
解析:畫出可行域如圖所示陰影部分,由z=x+y得y=-3
3、x+3z,作出直線y=-3x,并平移該直線,當直線y=-3x+3z過點A(2,3)時,目標函數z=x+y取得最大值為2+×3=3.
答案:3
5.(2018·高考浙江卷)已知λ∈R,函數f(x)=當λ=2時,不等式f(x)<0的解集是________.若函數f(x)恰有2個零點,則λ的取值范圍是________.
解析:若λ=2,則當x≥2時,令x-4<0,得2≤x<4;
當x<2時,令x2-4x+3<0,得1
4、個零點,結合函數的圖象(圖略)可知1<λ≤3或λ>4.
答案:(1,4) (1,3]∪(4,+∞)
1. 已知集合A={-2,-1,0,1,2},?RB={x|≥0},則A∩B= ( )
A.{-1,0,1} B.{-1,0}
C.{-2,-1,0} D.{0,1,2}
解析:由已知,可得?RB={x|x≥1或x<-2},所以B={x|-2≤x<1},又A={-2,-1,0,1,2},
所以A∩B={-2,-1,0},故選C.
答案:C
2.設a=0.23,b=log0.30.2,c=log30.2,則 ( )
A.a>b>c B.b>a>c
5、
C.b>c>a D.c>b>a
解析:因為0log0.30.3=1,c=log30.2a>c,故選B.
答案:B
3.若關于x的不等式2x2-8x-4-a>0在(1,4)內有解,則實數a的取值范圍是
( )
A.a<-4 B.a>-4
C.a>-12 D.a<-12
解析:不等式2x2-8x-4-a>0可化為a<2x2-8x-4,令f(x)=2x2-8x-4(11,b>0,則+的最小值為 ( )
A.4 B.5
C.6 D.8
解析:因為a>1,b>0,且a+2b=2,所以a-1>0,(a-1)+2b=1,所以+=(+)·[(a-1)+2b]=4++≥4+2 =8,當且僅當=時取等號,所以+的最小值是8,故選D.
答案:D
4