《江蘇省南通市高中數(shù)學(xué) 第二講 變換的復(fù)合與二階矩陣的乘法 一復(fù)合變換與二階短陣的乘法 2.1.1 矩陣的概念教案 新人教A版選修4-2(通用)》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省南通市高中數(shù)學(xué) 第二講 變換的復(fù)合與二階矩陣的乘法 一復(fù)合變換與二階短陣的乘法 2.1.1 矩陣的概念教案 新人教A版選修4-2(通用)(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2.1.1 矩陣的概念
教學(xué)目標(biāo)
1.了解矩陣的產(chǎn)生背景,并會(huì)用矩陣形式表示一些實(shí)際問題.
2.了解矩陣的相關(guān)知識(shí),如行、列、元素、零矩陣的意義和表示.
教學(xué)重點(diǎn)、難點(diǎn)
矩陣的概念
教學(xué)過程:
一、問題情境
情境1:已知向量,O(0,0),P(1,3).因此把,如果把的坐標(biāo)排成一列,可簡記為.
情境2:某電視臺(tái)舉辦歌唱比賽,甲乙兩名選手初、復(fù)賽成績?nèi)缦卤恚?
初賽
復(fù)賽
甲
80
90
乙
60
85
并簡記為.
情境3:將方程組中未知數(shù)的系數(shù)按原來的次序排列,并簡記為.
二、建構(gòu)數(shù)學(xué)
(一)矩陣的概念
1. 矩陣:我們把
2、形如,,這樣的矩形數(shù)字陣列稱為矩陣.用大寫黑體拉丁字母A,B,……或者(aij)來表示矩陣,其中i,j分別表示元素aij所在的行與列.
2. 矩陣的行 同一橫排中按原來順序排列的一行數(shù)(或字母)叫做矩陣的行.
3. 矩陣的列 同一豎排中按原來順序排列的一行數(shù)(或字母)叫做矩陣的列.
4. 矩陣的元素 組成矩陣的每一個(gè)數(shù)(或字母)稱為矩陣的元素
(二)矩陣的分類(按照行與列來分)
記為2×1矩陣,記為2×2矩陣(二階矩陣),記為2×3矩陣.
(三)幾個(gè)特殊矩陣
1. 零矩陣:所有元素都為零的矩陣叫做零矩陣.
2. 行矩陣:把像這樣只有一行的矩陣稱為行矩陣.
3. 列矩
3、陣:把像這樣只有一列的矩陣稱為列矩陣.
注:一般用希臘字母α,β,γ,來表示行、列矩陣.
(四)矩陣的相等
對(duì)于兩個(gè)矩陣A,B只有當(dāng)A,B的行數(shù)與列數(shù)分別相等,并且對(duì)應(yīng)位置的元素也分別相等時(shí),A和B才相等,此時(shí)記為A=B.
三、數(shù)學(xué)應(yīng)用:
例1 用矩陣表示下圖中的ΔABC,其中A(-1,0),B(0,2),C(2,0).
解:因?yàn)棣BC由點(diǎn)A,B,C唯一確定,
點(diǎn)A,B,C可以分別由列向量
來表示,所以ΔABC可表示為
變題1:如果像例1中那樣用矩陣表示平面中的圖形,那么該圖形有什么幾何特征?等腰梯形(數(shù)形結(jié)合)
變題2:已知是一個(gè)正三角形的三個(gè)頂點(diǎn)坐標(biāo)所
4、組成的矩陣,求a,b的值.
例2 某種水果的產(chǎn)地為,銷地為,請(qǐng)用矩陣表示產(chǎn)地運(yùn)到銷地水果數(shù)量,其中(見書本第4頁).
例3 已知A=,B=,若A=B,試求x,y,z.
分析:抓住相等的條件即可
例4 設(shè)矩陣A為二階矩陣,且規(guī)定其元素,求矩陣A.
四、課堂精練
1.在平面直角坐標(biāo)系內(nèi),分別畫出矩陣所表示的以坐標(biāo)原點(diǎn)為起點(diǎn)的
向量.
2.由矩陣表示平面中的圖形的面積為 .
3.已知,,若A=B,求a,b,c,d..
4.設(shè)矩陣A為二階矩陣,其元素滿足,,試求矩陣A.
五、回顧小結(jié)
1. 矩陣的相關(guān)概念及表示方法.
2. 矩陣相等的條件.
六、課后作業(yè)
1.已知A(3,1),B(5,2),則表示的列向量為
2.某東西方向十字路口的紅綠燈時(shí)間設(shè)置如下:綠燈30S,黃燈3S,紅燈20S,如果分別用1,0,—1表示綠燈、黃燈、紅燈,試用2矩陣表示該路口的時(shí)間設(shè)置為
3.設(shè)矩陣A為矩陣,且規(guī)定其元素,其中,那么A中所有元素之和為 38
4.已知,則 -2 A B C