(全國通用版)2022年高考數學一輪復習 第八章 立體幾何 課時達標檢測(三十六)直線、平面垂直的判定與性質 文

上傳人:xt****7 文檔編號:106098873 上傳時間:2022-06-13 格式:DOC 頁數:6 大?。?07.50KB
收藏 版權申訴 舉報 下載
(全國通用版)2022年高考數學一輪復習 第八章 立體幾何 課時達標檢測(三十六)直線、平面垂直的判定與性質 文_第1頁
第1頁 / 共6頁
(全國通用版)2022年高考數學一輪復習 第八章 立體幾何 課時達標檢測(三十六)直線、平面垂直的判定與性質 文_第2頁
第2頁 / 共6頁
(全國通用版)2022年高考數學一輪復習 第八章 立體幾何 課時達標檢測(三十六)直線、平面垂直的判定與性質 文_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國通用版)2022年高考數學一輪復習 第八章 立體幾何 課時達標檢測(三十六)直線、平面垂直的判定與性質 文》由會員分享,可在線閱讀,更多相關《(全國通用版)2022年高考數學一輪復習 第八章 立體幾何 課時達標檢測(三十六)直線、平面垂直的判定與性質 文(6頁珍藏版)》請在裝配圖網上搜索。

1、(全國通用版)2022年高考數學一輪復習 第八章 立體幾何 課時達標檢測(三十六)直線、平面垂直的判定與性質 文 1.(2018·廣東廣州模擬)設m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是(  ) A.若α⊥β,m?α,n?β,則m⊥n B.若m⊥α,m∥n,n∥β,則α⊥β C.若m⊥n,m?α,n?β,則α⊥β D.若α∥β,m?α,n?β,則m∥n 解析:選B 若α⊥β,m?α,n?β,則m與n相交、平行或異面,故A錯誤;∵m⊥α,m∥n,∴n⊥α,又∵n∥β,∴α⊥β,故B正確;若m⊥n,m?α,n?β,則α與β的位置關系不確定,故C錯誤;若α∥β,

2、m?α,n?β,則m∥n或m,n異面,故D錯誤.故選B. 2.(2018·湖南一中月考)下列說法錯誤的是(  ) A.兩兩相交且不過同一點的三條直線必在同一平面內 B.過直線外一點有且只有一個平面與已知直線垂直 C.如果共點的三條直線兩兩垂直,那么它們中每兩條直線確定的平面也兩兩垂直 D.如果兩條直線和一個平面所成的角相等,則這兩條直線一定平行 解析:選D 如果兩條直線和一個平面所成的角相等,這兩條直線可以平行、相交、異面. 3.如圖,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,則C1在底面ABC上的射影H必在(  ) A.直線AB上 B.直線BC上

3、C.直線AC上 D.△ABC內部 解析:選A 連接AC1(圖略),由AC⊥AB,AC⊥BC1,得AC⊥平面ABC1.∵AC?平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC上的射影H必在兩平面的交線AB上. 4.(2018·河北唐山模擬)如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有(  ) A.AG⊥平面EFH B.AH⊥平面EFH C.HF⊥平面AEF D.HG⊥平面AEF 解析:選B 根據折疊前、后AH⊥HE,AH⊥HF

4、不變,∴AH⊥平面EFH,B正確;∵過A只有一條直線與平面EFH垂直,∴A不正確;∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF?平面AEF,∴平面HAG⊥AEF,過點H作直線垂直于平面AEF,一定在平面HAG內,∴C不正確;由條件證不出HG⊥平面AEF,∴D不正確.故選B. 5.如圖,直三棱柱ABC -A1B1C1中,側棱長為2,AC=BC=1,∠ACB=90°,D是A1B1的中點,F是BB1上的動點,AB1,DF交于點E.要使AB1⊥平面C1DF,則線段B1F的長為(  ) A. B.1 C. D.2 解析:選A 設B1F=x,因為AB1⊥平面C1DF,DF

5、?平面C1DF,所以AB1⊥DF.由已知可得A1B1=,設Rt△AA1B1斜邊AB1上的高為h,則DE=h. 又2×=h,所以h=,DE=. 在Rt△DB1E中,B1E= =. 由面積相等得× =x,得x=. 6.如圖,已知∠BAC=90°,PC⊥平面ABC,則在△ABC,△PAC的邊所在的直線中,與PC垂直的直線是____________;與AP垂直的直線是________. 解析:∵PC⊥平面ABC, ∴PC垂直于直線AB,BC,AC. ∵AB⊥AC,AB⊥PC,AC∩PC=C, ∴AB⊥平面PAC, 又∵AP?平面PAC, ∴AB⊥AP,與AP垂直的直線是AB. 答

6、案:AB,BC,AC AB 7.如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點,當點M滿足________時,平面MBD⊥平面PCD.(只要填寫一個你認為是正確的條件即可) 解析:如圖,連接AC,BD,則AC⊥BD, ∵PA⊥底面ABCD, ∴PA⊥BD. 又PA∩AC=A, ∴BD⊥平面PAC,∴BD⊥PC, ∴當DM⊥PC(或BM⊥PC)時, 即有PC⊥平面MBD.而PC?平面PCD, ∴平面MBD⊥平面PCD. 答案:DM⊥PC(或BM⊥PC等) 8.(2018·福建泉州模擬)如圖,一張A4紙的長、寬分別為2a,2a,A,

7、B,C,D分別是其四條邊的中點.現將其沿圖中虛線折起,使得P1,P2,P3,P4四點重合為一點P,從而得到一個多面體.下列關于該多面體的命題,正確的是________.(寫出所有正確命題的序號) ①該多面體是三棱錐; ②平面BAD⊥平面BCD; ③平面BAC⊥平面ACD; ④該多面體外接球的表面積為5πa2. 解析:由題意得該多面體是一個三棱錐,故①正確;∵AP⊥BP,AP⊥CP,BP∩CP=P,∴AP⊥平面BCD,又∵AP?平面ABD,∴平面BAD⊥平面BCD,故②正確;同理可證平面BAC⊥平面ACD,故③正確;該多面體的外接球半徑R=a,所以該多面體外接球的表面積為5πa2,故④

8、正確.綜上,正確命題的序號為①②③④. 答案:①②③④ [大題常考題點——穩(wěn)解全解] 1.如圖,四棱錐P-ABCD 中, AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC 的中點.求證: (1)AP∥平面BEF; (2)BE⊥平面PAC. 證明:(1)設AC∩BE=O,連接OF,EC,如圖所示. 由于E為AD的中點,AB=BC=AD,AD∥BC, 所以AE∥BC,AE=AB=BC, 因此四邊形ABCE為菱形,所以O為AC的中點. 又F為PC 的中點,因此在△PAC中,可得AP∥OF. 又OF?平面BEF,AP?平面BEF.所以AP∥平面BE

9、F. (2)由題意知ED∥BC,ED=BC. 所以四邊形BCDE為平行四邊形,因此BE∥CD. 又AP⊥平面PCD, 所以AP⊥CD,因此AP⊥BE. 因為四邊形ABCE為菱形,所以BE⊥AC. 又AP∩AC=A,AP,AC?平面PAC, 所以BE⊥平面PAC. 2.(2018·廣州模擬)在三棱錐P -ABC中,△PAB是等邊三角形,∠APC=∠BPC=60°. (1)求證:AB⊥PC; (2)若PB=4,BE⊥PC,求三棱錐B -PAE的體積. 解:(1)證明:因為△PAB是等邊三角形,∠APC=∠BPC=60°,所以△PBC≌△PAC,所以AC=BC. 如圖,

10、取AB的中點D,連接PD,CD,則PD⊥AB,CD⊥AB, 因為PD∩CD=D, 所以AB⊥平面PDC, 因為PC?平面PDC, 所以AB⊥PC. (2)由(1)知,AB⊥PC,又BE⊥PC,AB∩BE=B,所以PC⊥平面ABE,所以PC⊥AE. 因為PB=4,所以在Rt△PEB中,BE=4sin 60°=2,PE=4cos 60°=2,在Rt△PEA中,AE=PEtan 60°=2, 所以AE=BE=2, 所以S△ABE=·AB·=4. 所以三棱錐B -PAE的體積VB -PAE=VP -ABE=S△AEB·PE=×4×2=. 3.(2018·合肥質檢)如圖,平面五邊形A

11、BCDE中,AB∥CE,且AE=2,∠AEC=60°,CD=ED=,cos∠EDC=.將△CDE沿CE折起,使點D到P的位置,且AP=,得到四棱錐P -ABCE. (1)求證:AP⊥平面ABCE; (2)記平面PAB與平面PCE相交于直線l,求證:AB∥l. 證明:(1)在△CDE中,∵CD=ED=,cos∠EDC=,由余弦定理得CE=2.連接AC(圖略),∵AE=2,∠AEC=60°,∴AC=2.又AP=,∴在△PAE中,PA2+AE2=PE2,即AP⊥AE.同理,AP⊥AC.而AC?平面ABCE,AE?平面ABCE,AC∩AE=A,故AP⊥平面ABCE. (2)∵AB∥CE,且

12、CE?平面PCE,AB?平面PCE,∴AB∥平面PCE.又平面PAB∩平面PCE=l,∴AB∥l. 4.(2018·山西省重點中學聯考)如圖,在四棱錐P -ABCD中,底面ABCD是矩形,且AB=BC,E,F分別在線段AB,CD上,G,H在線段PC上,EF⊥PA,且====.求證: (1)EH∥平面PAD; (2)平面EFG⊥平面PAC. 證明:(1)如圖,在PD上取點M,使得=,連接AM,MH,則==,所以MH=DC,MH∥CD, 又AE=AB,四邊形ABCD是矩形, 所以MH=AE,MH∥AE,所以四邊形AEHM為平行四邊形,所以EH∥AM, 又AM?平面PAD,EH?平面P

13、AD,所以EH∥平面PAD. (2)取AB的中點N,連接DN,則NE=DF,NE∥DF, 則四邊形NEFD為平行四邊形,則DN∥EF, 在△DAN和△CDA中,∠DAN=∠CDA,==, 則△DAN∽△CDA, 則∠ADN=∠DCA,則DN⊥AC,則EF⊥AC, 又EF⊥PA,AC∩PA=A,所以EF⊥平面PAC, 又EF?平面EFG,所以平面EFG⊥平面PAC. 5.(2018·福州五校聯考)如圖,在三棱柱ABC -A1B1C1中,側面ABB1A1是矩形,∠BAC=90°,AA1⊥BC,AA1=AC=2AB=4,且BC1⊥A1C. (1)求證:平面ABC1⊥平面A1ACC1

14、; (2)設D是A1C1的中點,判斷并證明在線段BB1上是否存在點E,使得DE∥平面ABC1.若存在,求三棱錐E -ABC1的體積. 解:(1)在三棱柱ABC -A1B1C1中,側面ABB1A1是矩形, ∴AA1⊥AB,又AA1⊥BC,AB∩BC=B,∴A1A⊥平面ABC,∴A1A⊥AC,又A1A=AC,∴A1C⊥AC1. 又BC1⊥A1C,BC1∩AC1=C1,∴A1C⊥平面ABC1, 又A1C?平面A1ACC1,∴平面ABC1⊥平面A1ACC1. (2)當E為B1B的中點時,連接AE,EC1,DE,如圖,取A1A的中點F,連接EF,FD, ∵EF∥AB,DF∥AC1, 又EF∩DF=F,AB∩AC1=A,∴平面EFD∥平面ABC1, 又DE?平面EFD,∴DE∥平面ABC1.此時VE -ABC1=VC1 -ABE=××2×2×4=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!