《八年級(jí)數(shù)學(xué)上冊(cè) 第十一章《三角形》11.3 多邊形及其內(nèi)角和 11.3.2 多邊形的內(nèi)角和教案 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《八年級(jí)數(shù)學(xué)上冊(cè) 第十一章《三角形》11.3 多邊形及其內(nèi)角和 11.3.2 多邊形的內(nèi)角和教案 新人教版(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、八年級(jí)數(shù)學(xué)上冊(cè) 第十一章《三角形》11.3 多邊形及其內(nèi)角和 11.3.2 多邊形的內(nèi)角和教案 新人教版
【知識(shí)與技能】
了解多邊形的內(nèi)角、外角等概念,能通過(guò)不同方法探索多邊形的內(nèi)角和與外角和公式,并會(huì)應(yīng)用它們進(jìn)行有關(guān)計(jì)算.
【過(guò)程與方法】
經(jīng)歷合作、交流等過(guò)程,初步形成推理思維.
【情感、態(tài)度與價(jià)值觀】
經(jīng)歷猜想、探索、歸納等過(guò)程,學(xué)會(huì)多角度、全方位研究問(wèn)題的方法,體會(huì)轉(zhuǎn)化、類比等數(shù)學(xué)思想.
◇教學(xué)重難點(diǎn)◇
【教學(xué)重點(diǎn)】
多邊形的內(nèi)角和公式與外角和公式.
【教學(xué)難點(diǎn)】
多邊形的內(nèi)角和定理的推導(dǎo)以及對(duì)多邊形外角和的理解.
◇教學(xué)過(guò)程◇
一、情境導(dǎo)入
如圖所示,小華從
2、A點(diǎn)出發(fā),沿直線前進(jìn)10米后左轉(zhuǎn)24°,再沿直線前進(jìn)10米,又向左轉(zhuǎn)24°,…,照這樣走下去,他第一次回到出發(fā)地A點(diǎn)時(shí),一共走的路程是多少米?你能計(jì)算嗎?
二、合作探究
探究點(diǎn)1 多邊形的內(nèi)角和
典例1 已知一個(gè)多邊形的內(nèi)角和是900°,則這個(gè)多邊形是( )
A.五邊形 B.六邊形
C.七邊形 D.八邊形
[解析] 設(shè)這個(gè)多邊形是n邊形,內(nèi)角和是(n-2)·180°,這樣就得到一個(gè)關(guān)于n的方程,從而求出邊數(shù)n的值.
[答案] C
變式訓(xùn)練 把n邊形變?yōu)?n+x)邊形,內(nèi)角和增加了720°,則x的值為( )
A.4 B.6
C.5 D.3
[答案] A
探究點(diǎn)2
3、多邊形的外角和
典例2 小鵬用家中多余的硬紙板做了一個(gè)如圖所示的多邊形飛鏢游戲盤(pán),則該游戲盤(pán)的內(nèi)角和比外角和多( )
A.1080° B.720°
C.540° D.360°
[解析] 根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,外角和等于360°列出算式求解即可.(8-2)×180°-360°=1080°-360°=720°.故該游戲盤(pán)的內(nèi)角和比外角和多720°.
[答案] B
【方法總結(jié)】多邊形的外角和與邊數(shù)無(wú)關(guān),任何多邊形的外角和都是360°.
變式訓(xùn)練 如果n邊形每一個(gè)內(nèi)角等于與它相鄰?fù)饨堑?倍,則n的值是( )
A.4 B.5
C.6 D.7
[答案]
4、C
探究點(diǎn)3 正多邊形的內(nèi)角與外角
典例3 如果一個(gè)多邊形的每一個(gè)外角都是60°,則這個(gè)多邊形的邊數(shù)是( )
A.3 B.4
C.5 D.6
[答案] D
變式訓(xùn)練 如圖,邊長(zhǎng)相等的正方形、正六邊形的一邊重合,則∠1的度數(shù)為( )
A.20° B.25° C.30° D.35°
[答案] C
探究點(diǎn)4 多邊形外角的理解
典例4 如圖,小東在足球場(chǎng)的中間位置,從A點(diǎn)出發(fā),每走6 m向左轉(zhuǎn)60°,已知AB=BC=6 m.
(1)小東是否能走回A點(diǎn),若能回到A點(diǎn),則需走多少米?走過(guò)的路徑是一個(gè)什么圖形?為什么?(路徑A到B到C到…)
(2)求出這個(gè)圖形的內(nèi)角和.
[解析] (1)∵從A點(diǎn)出發(fā),每走6 m向左轉(zhuǎn)60°,
∴360°÷60°=6,
∴走過(guò)的路徑是一個(gè)邊長(zhǎng)為6的正六邊形.
(2)正六邊形的內(nèi)角和為(6-2)×180°=720°.
三、板書(shū)設(shè)計(jì)
多邊形的內(nèi)角和
多邊形的內(nèi)角
◇教學(xué)反思◇
通過(guò)豐富有趣的探究活動(dòng),讓學(xué)生積極參與其中,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,使學(xué)生靈活掌握多邊形內(nèi)角和與外角和的概念與運(yùn)用.多數(shù)學(xué)生能達(dá)到預(yù)期目的,對(duì)課上吃力的同學(xué),課下還要及時(shí)進(jìn)行進(jìn)一步的關(guān)注,以后在課堂上還應(yīng)充分給學(xué)生探究的時(shí)間和空間,使每一個(gè)學(xué)生均有收獲.