2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題六 解析幾何 6.1 直線與圓練習(xí)

上傳人:xt****7 文檔編號:105727062 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大?。?01KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題六 解析幾何 6.1 直線與圓練習(xí)_第1頁
第1頁 / 共7頁
2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題六 解析幾何 6.1 直線與圓練習(xí)_第2頁
第2頁 / 共7頁
2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題六 解析幾何 6.1 直線與圓練習(xí)_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題六 解析幾何 6.1 直線與圓練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題六 解析幾何 6.1 直線與圓練習(xí)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題六 解析幾何 6.1 直線與圓練習(xí) 1.若直線l1:x+ay+6=0與l2:(a-2)x+3x+2a=0平行,則l1與l2之間的距離為(  ) A. B.4 C. D.2 解析: 由l1∥l2,得=≠,解得a=-1, 所以l1與l2的方程分別為l1:x-y+6=0, l2:x-y+=0, 所以l1與l2之間的距離d==. 答案: C 2.已知直線l:y=x+1平分圓C:(x-1)2+(y-b)2=4的周長,則直線x=3與圓C的位置關(guān)系是(  ) A.相交 B.相切 C.相離 D.不能確定 解析: 由已知得,圓心C(1,b)在直線

2、l:y=x+1上,所以b=1+1=2,即圓心C(1,2),半徑為r=2.由圓心C(1,2)到直線x=3的距離d=3-1=2=r知,此時,直線與圓相切. 答案: B 3.光線從點A(-3,4)發(fā)出,經(jīng)過x軸反射,再經(jīng)過y軸反射,最后經(jīng)過點B(-2,6),則經(jīng)y軸反射的光線的方程為(  ) A.2x+y-2=0 B.2x-y+2=0 C.2x+y+2=0 D.2x-y-2=0 解析: ∵點A(-3,4)關(guān)于x軸的對稱點A1(-3,-4)在經(jīng)過x軸反射的光線上,同樣點A1(-3,-4)關(guān)于y軸的對稱點A2(3,-4)在經(jīng)過y軸反射的光線上,∴kA2B==-2.故所求直線的方程為y-6=

3、-2(x+2),即2x+y-2=0,故選A. 答案: A 4.已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長度是2,則圓M與圓N:(x-1)2+(y-1)2=1的位置關(guān)系是(  ) A.內(nèi)切 B.相交 C.外切 D.相離 解析: 圓M:x2+y2-2ay=0(a>0)可化為:x2+(y-a)2=a2,由題意,d=,所以有,a2=+2,解得a=2.所以圓M:x2+(y-2)2=22,圓心距為,半徑和為3,半徑差為1,所以二者相交. 答案: B 5.(2018·全國卷Ⅲ)直線x+y+2=0分別與x軸,y軸交于A,B兩點,點P在圓(x-2)2+y2=2上,則

4、△ABP面積的取值范圍是(  ) A.[2,6] B.[4,8] C.[,3] D.[2,3] 解析: 設(shè)圓(x-2)2+y2=2的圓心為C,半徑為r,點P到直線x+y+2=0的距離為d,則圓心C(2,0),r=,所以圓心C到直線x+y+2=0的距離為2,可得dmax=2+r=3,dmin=2-r=.由已知條件可得AB=2,所以△ABP面積的最大值為AB·dmax=6,△ABP面積的最小值為AB·dmin=2. 綜上,△ABP面積的取值范圍是[2,6].故選A. 答案: A 6.(2018·全國卷Ⅰ)直線y=x+1與圓x2+y2+2y-3=0交于A,B兩點,則|AB|=____

5、____. 解析: 由x2+y2+2y-3=0,得x2+(y+1)2=4. ∴圓心C(0,-1),半徑r=2. 圓心C(0,-1)到直線x-y+1=0的距離d==, ∴|AB|=2=2=2. 答案: 2 7.已知直線l1過點(-2,0)且傾斜角為30°,直線l2過點(2,0)且與直線l1垂直,則直線l1與直線l2的交點坐標(biāo)為________. 解析: 直線l1的斜率k1=tan 30°=,因為直線l2與直線l1垂直,所以直線l2的斜率k2=-=-,所以直線l1的方程為y=(x+2),直線l2的方程為y=-(x-2),聯(lián)立直線l1與l2,得得即直線l1與直線l2的交點坐標(biāo)為(1,)

6、. 答案: (1,) 8.過點C(3,4)作圓x2+y2=5的兩條切線,切點分別為A,B,則點C到直線AB的距離為________. 解析: 以O(shè)C為直徑的圓的方程為2+(y-2)2=2,AB為圓C與圓O:x2+y2=5的公共弦,所以AB的方程為x2+y2-=5-,化為3x+4y-5=0,C到AB的距離為d==4. 答案: 4 9.已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值. (1)直線l1過點(-3,-1),并且直線l1與l2垂直; (2)直線l1與直線l2平行,并且坐標(biāo)原點到l1,l2的距離相等. 解析: (1)∵l1

7、⊥l2, ∴a(a-1)+(-b)·1=0,即a2-a-b=0.① 又點(-3,-1)在l1上, ∴-3a+b+4=0.② 由①②得,a=2,b=2. (2)由題意知當(dāng)a=0或b=0時不成立. ∵l1∥l2,∴=1-a,∴b=, 故l1和l2的方程可分別表示為 (a-1)x+y+=0,(a-1)x+y+=0, 又原點到l1與l2的距離相等, ∴4=, ∴a=2或a=, ∴a=2,b=-2或a=,b=2. 10.已知點P(0,5)及圓C:x2+y2+4x-12y+24=0. (1)若直線l過點P且被圓C截得的線段長為4,求l的方程; (2)求過P點的圓C的弦的中點的

8、軌跡方程. 解析: (1)如圖所示, |AB|=4, 將圓C方程化為標(biāo)準(zhǔn)方程為(x+2)2+(y-6)2=16, 所以圓C的圓心坐標(biāo)為(-2,6),半徑r=4, 設(shè)D是線段AB的中點,則CD⊥AB, 所以|AD|=2,|AC|=4.C點坐標(biāo)為(-2,6). 在Rt△ACD中,可得|CD|=2. 若直線l的斜率存在,設(shè)為k,則直線l的方程為y-5=kx,即kx-y+5=0. 由點C到直線AB的距離公式:=2,得k=. 故直線l的方程為3x-4y+20=0. 直線l的斜率不存在時,也滿足題意,此時方程為x=0. 所以所求直線l的方程為x=0或3x-4y+20=0. (

9、2)設(shè)過P點的圓C的弦的中點為D(x,y), 則CD⊥PD,即·=0, 所以(x+2,y-6)·(x,y-5)=0, 化簡得所求軌跡方程為x2+y2+2x-11y+30=0. B級 1.(2018·貴陽市適應(yīng)性考試(一))已知直線l:ax-3y+12=0與圓M:x2+y2-4y=0相交于A,B兩點,且∠AMB=,則實數(shù)a=________. 解析: 直線l的方程可變形為y=ax+4,所以直線l過定點(0,4),且該點在圓M上.圓的方程可變形為x2+(y-2)2=4,所以圓心為M(0,2),半徑為2.如圖,因為∠AMB=,所以△AMB是等邊三角形,且邊長為2,高為,即圓心M到

10、直線l的距離為,所以=,解得a=±. 答案: ± 2.(2018·貴陽市摸底考試)過點M(2,2)的直線l與坐標(biāo)軸的正方向分別相交于A,B兩點,O為坐標(biāo)原點,若△OAB的面積為8,則△OAB外接圓的標(biāo)準(zhǔn)方程是________________. 解析: 法一:設(shè)直線l的方程為+=1(a>0,b>0),由直線l過點M(2,2),得+=1.又S△OAB=ab=8,所以a=4,b=4,不妨設(shè)A(4,0),B(0,4),△OAB外接圓的方程為x2+y2+Dx+Ey+F=0,則將O,A,B的坐標(biāo)分別代入得解得所以△OAB外接圓的方程為x2+y2-4x-4y=0,標(biāo)準(zhǔn)方程為(x-2)2+(y-2)2=

11、8. 法二:設(shè)直線l的方程為+=1(a>0,b>0),由直線l過點M(2,2),得+=1.又S△OAB=ab=8,所以a=4,b=4,所以△OAB是等腰直角三角形,且M是斜邊AB的中點,則△OAB外接圓的圓心是點M(2,2),半徑|OM|=2,所以△OAB外接圓的標(biāo)準(zhǔn)方程是(x-2)2+(y-2)2=8. 答案: (x-2)2+(y-2)2=8 3.已知圓C過點P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對稱. (1)求圓C的方程; (2)設(shè)Q為圓C上的一個動點,求·的最小值. 解析: (1)設(shè)圓心C(a,b),則 解得 則圓C的方程

12、為x2+y2=r2, 將點P的坐標(biāo)代入得r2=2, 故圓C的方程為x2+y2=2. (2)設(shè)Q(x,y),則x2+y2=2, 且·=(x-1,y-1)·(x+2,y+2)=x2+y2+x+y-4=x+y-2, 令x=cos θ,y=sin θ, 則·=x+y-2=(sin θ+cos θ)-2 =2sin-2. 所以·的最小值為-4. 4.已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y-29=0相切. (1)設(shè)直線ax-y+5=0與圓相交于A,B兩點,求實數(shù)a的取值范圍; (2)在(1)的條件下,是否存在實數(shù)a,使得過點P(-2,4)的直線l垂直平

13、分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由. 解析: (1)設(shè)圓心為M(m,0)(m∈Z). ∵圓與直線4x+3y-29=0相切,且圓的半徑為5, ∴=5,即|4m-29|=25. ∵m為整數(shù),∴m=1. ∴圓的方程是(x-1)2+y2=25. 將ax-y+5=0變形為y=ax+5, 并將其代入圓的方程,消去y并整理, 得(a2+1)x2+2(5a-1)x+1=0. 由于直線ax-y+5=0交圓于A,B兩點, 故Δ=4(5a-1)2-4(a2+1)>0,即12a2-5a>0, 解得a<0或a>. ∴實數(shù)a的取值范圍是(-∞,0)∪. (2)設(shè)符合條件的實數(shù)a存在. 由(1)得a≠0,則直線l的斜率為-. ∴直線l的方程為y=-(x+2)+4,即x+ay+2-4a=0. ∴直線l垂直平分弦AB,∴圓心M(1,0)必在直線l上. ∴1+0+2-4a=0,解得a=. ∵∈, ∴存在實數(shù)a=,使得過點P的直線l垂直平分弦AB.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!