(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第6講 對數(shù)與對數(shù)函數(shù)學(xué)案

上傳人:彩*** 文檔編號:105722720 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):13 大?。?52KB
收藏 版權(quán)申訴 舉報(bào) 下載
(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第6講 對數(shù)與對數(shù)函數(shù)學(xué)案_第1頁
第1頁 / 共13頁
(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第6講 對數(shù)與對數(shù)函數(shù)學(xué)案_第2頁
第2頁 / 共13頁
(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第6講 對數(shù)與對數(shù)函數(shù)學(xué)案_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第6講 對數(shù)與對數(shù)函數(shù)學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第6講 對數(shù)與對數(shù)函數(shù)學(xué)案(13頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 第6講 對數(shù)與對數(shù)函數(shù) 板塊一 知識梳理·自主學(xué)習(xí) [必備知識] 考點(diǎn)1 對數(shù)的定義 如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作x=logaN,其中a叫做對數(shù)的底數(shù),N叫做真數(shù). 考點(diǎn)2 對數(shù)的運(yùn)算法則 如果a>0且a≠1,M>0,N>0,那么 (1)loga(M·N)=logaM+logaN, (2)loga=logaM-logaN, (3)logaMn=nlogaM(n∈R). 考點(diǎn)3 對數(shù)函數(shù)的圖象與性質(zhì) a>1 0

2、,+∞)上是單調(diào)遞增的 在(0,+∞)上是單調(diào)遞減的 函數(shù)值正負(fù) 當(dāng)x>1時(shí),y>0; 當(dāng)0<x<1時(shí),y<0 當(dāng)x>1時(shí),y<0; 當(dāng)0<x<1時(shí),y>0 考點(diǎn)4 反函數(shù) 指數(shù)函數(shù)y=ax(a>0且a≠1)與對數(shù)函數(shù)y=logax(a>0且a≠1)互為反函數(shù),它們的圖象關(guān)于直線y=x對稱. [必會結(jié)論] 1.對數(shù)的性質(zhì)(a>0且a≠1) (1)loga1=0;(2)logaa=1;(3)alogaN=N. 2.換底公式及其推論 (1)logab=(a,c均大于0且不等于1,b>0); (2)logab·logba=1,即logab=; (3)logambn=

3、logab; (4)logab·logbc·logcd=logad. 3.對數(shù)函數(shù)的圖象與底數(shù)大小的比較 如圖,作直線y=1,則該直線與四個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo)為相應(yīng)的底數(shù). 故0<c<d<1<a<b.由此我們可得到以下規(guī)律:在第一象限內(nèi)從左到右底數(shù)逐漸增大. [考點(diǎn)自測] 1.判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)若MN>0,則loga(MN)=logaM+logaN.(  ) (2)logax·logay=loga(x+y).(  ) (3)對數(shù)函數(shù)y=logax(a>0且a≠1)在(0,+∞)上是增函數(shù).(  ) (4)函數(shù)y=ln 與y=

4、ln (1+x)-ln (1-x)的定義域相同.(  ) (5)對數(shù)函數(shù)y=logax(a>0且a≠1)的圖象過定點(diǎn)(1,0)且過點(diǎn)(a,1),,函數(shù)圖象只在第一、四象限.(  ) 答案 (1)× (2)× (3)× (4)√ (5)√ 2.[2018·廣東深圳模擬]已知a=0.30.3,b=1.20.3,c=log1.20.3,則a,b,c的大小關(guān)系為(  ) A.c1,c=log1.20.3<0, ∴c

5、lg 25+lg 2-lg -log29×log32的值是________. 答案?。? 解析 原式=lg 5+lg 2+-2=1+-2=-. 4.[課本改編]已知a=(a>0),則loga=________. 答案 3 解析 因?yàn)閍=(a>0),所以a==3,故loga=log3=3. 5.[2018·陜西模擬]已知4a=2,lg x=a,則x=________. 答案  解析 ∵4a=22a=2,∴a=.∵lg x=,∴x=. 6.[2015·天津高考]已知a>0,b>0,ab=8,則當(dāng)a的值為________時(shí),log2a·log2(2b)取得最大值. 答案 4 解析

6、 由于a>0,b>0,ab=8,所以a=,所以log2a·log2(2b)=log2·log2(2b)=(3-log2b)·(1+log2b)=-(log2b)2+2log2b+3=-(log2b-1)2+4,當(dāng)b=2時(shí),有最大值4,此時(shí)a=4. 板塊二 典例探究·考向突破 考向 對數(shù)的化簡與求值 例 1 (1)lg 52+lg 8+lg 5·lg 20+(lg 2)2的值為________. 答案 3 解析 原式=2lg 5+2lg 2+lg 5(1+lg 2)+lg2 2=2(lg 5+lg 2)+lg 5+lg 2(lg 2+lg 5)=2+lg 5+lg 2=3. (2)已

7、知3a=4b=,則+=________. 答案 2 解析 因?yàn)?a=4b=,所以a=log3, b=log4,=log3,=log4, 所以+=log3+log4=log12=2. (3)[2016·浙江高考]已知a>b>1.若logab+logba=,ab=ba,則a=________,b=________. 答案 4 2 解析 由于a>b>1,則logab∈(0,1),因?yàn)閘ogab+logba=,即logab+=,所以logab=或logab=2(舍去),所以a=b,即a=b2,所以ab=(b2)b=b2b=ba,所以a=2b,b2=2b,所以b=2(b=0舍去),a=4.

8、 觸類旁通 對數(shù)運(yùn)算的一般思路 (1)將真數(shù)化為底數(shù)的指數(shù)冪的形式進(jìn)行化簡; (2)將同底對數(shù)的和、差、倍合并; (3)利用換底公式將不同底的對數(shù)式轉(zhuǎn)化成同底的對數(shù)式,要注意換底公式的正用、逆用及變形應(yīng)用. 【變式訓(xùn)練1】 (1)計(jì)算:lg 5(lg 8+lg 1000)+(lg 2)2+lg +lg 0.06=________. 答案 1 解析 原式=lg 5(3lg 2+3)+3(lg 2)2+lg =3lg 5·lg 2+3lg 5+3(lg 2)2-2=3lg 2+3lg 5-2=1. (2)計(jì)算:(log32+log92)·(log43+log83)=_______

9、_. 答案  解析 原式=·=log32·log23=. 考向 對數(shù)函數(shù)的圖象及應(yīng)用 例 2 當(dāng)02,解得a>, ∴

10、合法求解. 【變式訓(xùn)練2】 當(dāng)x∈(1,2)時(shí),不等式(x-1)2<logax恒成立,求a的取值范圍. 解 設(shè)f1(x)=(x-1)2,f2(x)=logax,要使當(dāng)x∈(1,2)時(shí),不等式(x-1)2<logax恒成立,只需f1(x)=(x-1)2在(1,2)上的圖象在f2(x)=logax的下方即可,如圖所示. 當(dāng)0<a<1時(shí),顯然不成立. 當(dāng)a>1時(shí),如圖,要使在(1,2)上, f1(x)=(x-1)2的圖象在f2(x)=logax的下方,只需f1(2)≤f2(2),即(2-1)2≤loga2.∵loga2≥1,∴1<a≤2,即a的取值范圍為(1,2]. 考向 對數(shù)函

11、數(shù)的性質(zhì)及其應(yīng)用 命題角度1 比較對數(shù)值的大小 例3 [2017·天津高考]已知奇函數(shù)f(x)在R上是增函數(shù),g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),則a,b,c的大小關(guān)系為(  ) A.a(chǎn)<b<c B.c<b<a C.b<a<c D.b<c<a 答案 C 解析 ∵f(x)是奇函數(shù),∴f(-x)=-f(x), ∴g(-x)=-xf(-x)=xf(x)=g(x),g(x)為偶函數(shù). 又f(x)在R上遞增,當(dāng)x>0時(shí),f(x)>f(0)=0,且f′(x)>0,g(x)=xf(x),則g′(x)=f(x)+xf′(x)>0,∴

12、g(x)在[0,+∞)上遞增. a=g(-log25.1)=g(log25.1),由對數(shù)函數(shù)y=log2x的性質(zhì),知3=log28>log25.1>log24=2>20.8,∴c>a>b.故選C. 命題角度2 解簡單的對數(shù)不等式 例4 [2018·西安模擬]已知f(x)是定義在R上的偶函數(shù),且在[0,+∞)上為增函數(shù),f=0,則不等式f(logx)>0的解集為________. 答案 ∪(2,+∞) 解析 ∵f(x)是R上的偶函數(shù), ∴它的圖象關(guān)于y軸對稱. ∵f(x)在[0,+∞)上為增函數(shù), ∴f(x)在(-∞,0]上為減函數(shù), 由f=0,得f=0. ∴f(logx

13、)>0?logx<-或logx>?x>2或00,得x>3或x<1. 故函數(shù)定義域?yàn)?-∞,1)∪(3,+∞). 令u=x2-4x+3,對稱軸為x=2

14、, 則u在(-∞,1)上單調(diào)遞減,在(3,+∞)上單調(diào)遞增. 又y=logu在(0,+∞)上單調(diào)遞減, 所以f(x)的單調(diào)遞增區(qū)間是(-∞,1),單調(diào)遞減區(qū)間是(3,+∞). (2)令g(x)=x2-2ax+3,要使f(x)在(-∞,2)上為增函數(shù),應(yīng)使g(x)在(-∞,2)上單調(diào)遞減,且恒大于0. 因?yàn)榧碼無解. 所以不存在實(shí)數(shù)a,使f(x)在(-∞,2)上為增函數(shù). 觸類旁通 對數(shù)函數(shù)性質(zhì)及應(yīng)用中應(yīng)注意的問題 (1)比較對數(shù)值大小時(shí),若底數(shù)相同,構(gòu)造相應(yīng)的對數(shù)函數(shù),利用單調(diào)性求解;若底數(shù)不同,可以找中間量,也可以用換底公式化成同底的對數(shù)再比較. (2)解簡單的對數(shù)不等式

15、時(shí),先利用對數(shù)的運(yùn)算性質(zhì)化為同底數(shù)的對數(shù)值,再利用對數(shù)函數(shù)的單調(diào)性轉(zhuǎn)化為一般不等式求解. (3)利用對數(shù)函數(shù)的性質(zhì),求與對數(shù)函數(shù)有關(guān)的復(fù)合函數(shù)的值域和單調(diào)性問題,必須弄清三方面的問題,一是定義域,所有問題都必須在定義域內(nèi)討論;二是底數(shù)與1的大小關(guān)系;三是復(fù)合函數(shù)的構(gòu)成,即它是由哪些基本初等函數(shù)復(fù)合而成的. 核心規(guī)律 1.指數(shù)式a b=N與對數(shù)式logaN=b的關(guān)系以及這兩種形式的互化是對數(shù)運(yùn)算法則的關(guān)鍵. 2.多個(gè)對數(shù)函數(shù)圖象比較底數(shù)大小的問題,可通過圖象與直線y=1交點(diǎn)的橫坐標(biāo)進(jìn)行判定. 3.研究對數(shù)型函數(shù)的圖象時(shí),一般從最基本的對數(shù)函數(shù)的圖象入手,通過平移、伸縮、對稱變換得到

16、. 4.利用單調(diào)性可解決比較大小、解不等式、求最值等問題,其基本方法是“同底法”,即把不同底的對數(shù)式化為同底的對數(shù)式,然后根據(jù)單調(diào)性來解決. 滿分策略 1.在運(yùn)算性質(zhì)logaMn=nlogaM中,要特別注意條件,當(dāng)n∈N*,且n為偶數(shù)時(shí),在無M>0的條件下應(yīng)為logaMn=nloga|M|. 2.指數(shù)函數(shù)y=ax(a>0,且a≠1)與對數(shù)函數(shù)y=logax(a>0,且a≠1)互為反函數(shù),應(yīng)從概念、圖象和性質(zhì)三個(gè)方面理解它們之間的聯(lián)系與區(qū)別. 3.解決與對數(shù)函數(shù)有關(guān)的問題時(shí)需注意兩點(diǎn):(1)務(wù)必先研究函數(shù)的定義域;(2)注意對數(shù)底數(shù)的取值范圍. 板塊三 啟智培優(yōu)·破譯高考 創(chuàng)新

17、交匯系列2——有關(guān)對數(shù)運(yùn)算的創(chuàng)新應(yīng)用問題 [2017·北京高考]根據(jù)有關(guān)資料,圍棋狀態(tài)空間復(fù)雜度的上限M約為3361,而可觀測宇宙中普通物質(zhì)的原子總數(shù)N約為1080.則下列各數(shù)中與最接近的是(  ) (參考數(shù)據(jù):lg 3≈0.48) A.1033 B.1053 C.1073 D.1093 解題視點(diǎn) 首先要讀懂題意,搞清其本質(zhì)就是利用對數(shù)來比較兩個(gè)數(shù)的大小,然后根據(jù)相關(guān)公式計(jì)算. 解析 由題意,lg=lg=lg 3361-lg 1080 =361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=33,lg 1053=53,lg 1

18、073=73,lg 1093=93, 故與最接近的是1093.故選D. 答案 D 答題啟示 在解決對數(shù)的化簡與求值問題時(shí),要理解并靈活運(yùn)用對數(shù)的定義、對數(shù)的運(yùn)算性質(zhì)、對數(shù)恒等式和對數(shù)的換底公式,同時(shí)還要注意化簡過程中的等價(jià)性和對數(shù)式與指數(shù)式的互化. 跟蹤訓(xùn)練 里氏震級M的計(jì)算公式為M=lg A-lg A0,其中A是測震儀記錄的地震曲線的最大振幅,A0是相應(yīng)的標(biāo)準(zhǔn)地震的振幅.假設(shè)在一次地震中,測震儀記錄的最大振幅是1000,此時(shí)標(biāo)準(zhǔn)地震的振幅為0.001,則此次地震的震級為________級;9級地震的最大振幅是5級地震的最大振幅的________倍. 答案 6 10000 解析 

19、根據(jù)題意,由lg 1000-lg 0.001=6得此次地震的震級為6級.因?yàn)闃?biāo)準(zhǔn)地震的振幅為0.001,設(shè)9級地震的最大振幅為A9,則lg A9-lg 0.001=9,解得A9=106,同理5級地震的最大振幅A5=102,所以9級地震的最大振幅是5級地震的最大振幅的10000倍. 板塊四 模擬演練·提能增分 [A級 基礎(chǔ)達(dá)標(biāo)] 1.[2018·廣東湛江模擬]函數(shù)f(x)=的定義域是(  ) A.(0,e) B.(0,e] C.[e,+∞) D.(e,+∞) 答案 B 解析 要使函數(shù)f(x)=有意義,則 解得0

20、.設(shè)a=log2,b=log,c=0.3,則(  ) A.a(chǎn)1,00,log5b=a,lg b=c,5d=10,則下列等式一定成立的是(  ) A.d=ac B.a(chǎn)=cd C.c=ad D.d=a+c 答案 B 解析 由已知得5a=b,10c=b,∴5a=10c,∵5d=10,∴5dc=10c,則5dc=5a,∴dc=a.故選B. 4.[2018·西安模擬]已知函數(shù)f(x)=loga(2x+b

21、-1)(a>0,a≠1)的圖象如圖所示,則a,b滿足的關(guān)系是(  ) A.01.函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為(0,logab),由函數(shù)圖象可知-1

22、2) B.(-∞,1) C.(1,+∞) D.(4,+∞) 答案 D 解析 令u=x2-2x-8,則關(guān)于u的函數(shù)y=ln u在定義域(0,+∞)上是一個(gè)單調(diào)遞增函數(shù),故要求f(x)=ln (x2-2x-8)的單調(diào)遞增區(qū)間,只需使u(x)=x2-2x-8>0且u(x)在該區(qū)間單調(diào)遞增.解x2-2x-8=(x-4)(x+2)>0,得x<-2或x>4;u(x)=x2-2x-8的圖象開口向上,對稱軸為x=1,所以x>4時(shí)u(x)單調(diào)遞增,所以f(x)=ln (x2-2x-8)的單調(diào)遞增區(qū)間為(4,+∞).故選D. 7.[2018·安徽江淮聯(lián)考]已知a>0,b>0,且a≠1,則“l(fā)oga

23、b>0”是“(a-1)(b-1)>0”的(  ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 答案 C 解析 a>0,b>0且a≠1,若logab>0,則a>1,b>1或00;若(a-1)(b-1)>0,則或則a>1,b>1或00,∴“l(fā)ogab>0”是“(a-1)(b-1)>0”的充分必要條件. 8.[2015·浙江高考]若a=log43,則2a+2-a=________. 答案  解析 原式=2log43+2-log43=+=. 9.已知函數(shù)f(n)

24、=logn+1(n+2)(n∈N*),定義使f(1)·f(2)·f(3)·…·f(k)為整數(shù)的數(shù)k(k∈N*)叫做企盼數(shù),則在區(qū)間[1,2017]內(nèi)這樣的企盼數(shù)共有________個(gè). 答案 9 解析 令g(k)=f(1)·f(2)·f(3)·…·f(k), ∵f(k)=logk+1(k+2)=,∴g(k)=××…×==log2(k+2).要使g(k)成為企盼數(shù),則k+2=2n,n∈N*.∵k∈[1,2017],∴(k+2)∈[3,2019],即2n∈[3,2019].∵22=4,210=1024,211=2048,∴可取n=2,3,…,10.因此在區(qū)間[1,2017]內(nèi)這樣的企盼數(shù)共有

25、9個(gè). 10.已知函數(shù)f(x)=loga(8-ax)(a>0,且a≠1),若f(x)>1在區(qū)間[1,2]上恒成立,則實(shí)數(shù)a的取值范圍為________. 答案  解析 當(dāng)a>1時(shí),f(x)=loga(8-ax)在[1,2]上是減函數(shù),由于f(x)>1恒成立,所以f(x)min=loga(8-2a)>1,8-2a>a,即a<,故11恒成立,所以f(x)min=loga(8-a)>1,且8-2a>0,所以a>4,且a<4,故這樣的a不存在. 綜上可知,實(shí)數(shù)a的取值范圍是. [B級 知能提升]

26、 1.若f(x)=lg (x2-2ax+1+a)在區(qū)間(-∞,1]上遞減,則a的取值范圍為(  ) A.[1,2) B.[1,2] C.[1,+∞) D.[2,+∞) 答案 A 解析 令函數(shù)g(x)=x2-2ax+1+a=(x-a)2+1+a-a2,對稱軸為x=a,要使函數(shù)在(-∞,1]上遞減,則有即解得1≤a<2,即a∈[1,2).故選A. 2.[2018·河北監(jiān)測]設(shè)a=log32,b=ln 2,c=5,則(  ) A.a(chǎn)

27、32>log3=,所以c0,故A==7. 4.[2018·福建六校聯(lián)考]已知函數(shù)f(x)=loga(x+2)+loga(4-x)(a>0且a≠1). (1)求函數(shù)f(x)的定義域; (2)若函數(shù)f(x)在區(qū)間[0,3]上的最小值為-2,求實(shí)數(shù)a的值. 解 (1)依題意得解得-2

28、(x)=loga(x+2)+loga(4-x)=loga[(x+2)(4-x)], 令t=(x+2)(4-x),則可變形得t=-(x-1)2+9, ∵0≤x≤3,∴5≤t≤9, 若a>1,則loga5≤logat≤loga9, ∴f(x)min=loga5=-2,則a2=<1(舍去), 若00,且a≠1)的最大值是1,最小值是-,求a的值. 解 由題意知f(x)=(logax+1)·(logax+2) =(logx+3logax+2) =2-. 當(dāng)f(x)取最小值-時(shí),logax=-. 又∵x∈[2,8],∴a∈(0,1). ∵f(x)是關(guān)于logax的二次函數(shù), ∴函數(shù)f(x)的最大值必在x=2或x=8時(shí)取得. 若2-=1,則a=2, 此時(shí)f(x)取得最小值時(shí), x=(2)=?[2,8],舍去. 若2-=1,則a=, 此時(shí)f(x)取得最小值時(shí),x==2∈[2,8],符合題意,∴a=. 13

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!