2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 平面向量的基本定理及坐標(biāo)表示教案 新人教A版
《2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 平面向量的基本定理及坐標(biāo)表示教案 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 平面向量的基本定理及坐標(biāo)表示教案 新人教A版(13頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 平面向量的基本定理及坐標(biāo)表示教案 新人教A版 自主梳理 1.平面向量基本定理 定理:如果e1,e2是同一平面內(nèi)的兩個(gè)________向量,那么對(duì)于這一平面內(nèi)的任意向量a,__________一對(duì)實(shí)數(shù)λ1,λ2,使a=______________. 其中,不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組________. 1.不共線 有且只有 λ1e1+λ2e2 基底 2.夾角 (1)已知兩個(gè)非零向量a和b,作=a,=b, 則∠AOB=θ叫做向量a與b的________. (2)向量夾角θ的范圍是________,a與b同向時(shí),夾角
2、θ=____;a與b反向時(shí),夾角θ=____. (3)如果向量a與b的夾角是________,我們說a與b垂直,記作________. 2.(1)夾角 (2)[0,π] 0 π (3) a⊥b 3.平面向量的正交分解: 把一個(gè)向量分解為兩個(gè)____________的向量,叫做把向量正交分解. 3.互相垂直 4.平面向量的坐標(biāo)表示: ①在平面直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個(gè)單位向量i,j作為基底,對(duì)于平面內(nèi)的一個(gè)向量a,有且只有一對(duì)實(shí)數(shù)x,y使a=xi+yj,我們把有序數(shù)對(duì)______叫做向量a的________,記作a=________,其中x叫a在______
3、__上的坐標(biāo),y叫a在________上的坐標(biāo). 4.(x,y) 坐標(biāo) (x,y) x軸 y軸 ②設(shè)=xi+yj,則向量的坐標(biāo)(x,y)就是________的坐標(biāo),即若=(x,y),則A點(diǎn)坐標(biāo)為__________,反之亦成立.(O是坐標(biāo)原點(diǎn)) ②終點(diǎn)A (x,y) 注意:要區(qū)分點(diǎn)的坐標(biāo)與向量坐標(biāo)的不同,盡管在形式上它們完全一樣,但意義完全不同,向量坐標(biāo)中既有方向也有大小的信息. 5.平面向量的坐標(biāo)運(yùn)算 (1) 向量加法、減法、數(shù)乘向量及向量的模 已知向量a=(x1,y1),b=(x2,y2)和實(shí)數(shù)λ,那么a+b=________________________, a-b=
4、________________________,λa=________________.|a|=____________. (x1+x2,y1+y2) (x1-x2,y1-y2) (λx1,λy1) (2)向量坐標(biāo)的求法 ①若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo). 已知A(),B(),則=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1), 即一個(gè)向量的坐標(biāo)等于表示此向量的有向線段的__________的坐標(biāo)減去__________的坐標(biāo). ||=______________. (2)終點(diǎn) 始點(diǎn) 6.若a=(x1,y1),b=(x2,y2
5、) (b≠0),則a∥b的充要條件是________________________. x1y2-x2y1=0 注意:.若a=(x1,y1),b=(x2,y2),則a∥b的充要條件不能表示成 =,因?yàn)閤2,y2有可能等于0,所以應(yīng)表示為x1y2-x2y1=0.同時(shí),a∥b的充要條件也不能錯(cuò)記為x1x2-y1y2=0,x1y1-x2y2=0等. 7.(1)P1(x1,y1),P2(x2,y2),則P1P2的中點(diǎn)P的坐標(biāo)為_____________________. (2)P1(x1,y1),P2(x2,y2),P3(x3,y3),則△P1P2P3的重心P的坐標(biāo)為___________
6、____. 7.(1) (2) 點(diǎn)評(píng): 1.基底的不唯一性 只要兩個(gè)向量不共線,就可以作為平面的一組基底,對(duì)基底的選取不唯一,平面內(nèi)任意向量a都可被這個(gè)平面的一組基底e1,e2線性表示,且在基底確定后,這樣的表示是唯一的. 2.向量坐標(biāo)與點(diǎn)的坐標(biāo)的區(qū)別 在平面直角坐標(biāo)系中,以原點(diǎn)為起點(diǎn)的向量=a,點(diǎn)A的位置被向量a唯一確定,此時(shí)點(diǎn)A的坐標(biāo)與a的坐標(biāo)統(tǒng)一為(x,y),但應(yīng)注意其表示形式的區(qū)別,如點(diǎn)A(x,y),向量a==(x,y). 當(dāng)平面向量平行移動(dòng)到時(shí),向量不變即==(x,y),但的起點(diǎn)O1和終點(diǎn)A1的坐標(biāo)都發(fā)生了變化. 基礎(chǔ)檢測(cè) 1.設(shè)平面向量a=(3,5),b=(-
7、2,1),則a-2b=__________.(7,3) 2.在?ABCD中,AC為一條對(duì)角線,=(2,4),=(1,3),則向量的坐標(biāo)為____.(-3,-5) 3.已知向量a=(1,2),b=(-3,2),若ka+b與b平行,則k=________.0 4.在平面坐標(biāo)系內(nèi),已知點(diǎn)A(2,1),B(0,2),C(-2,1),O(0,0).給出下面的結(jié)論: ①直線OC與直線BA平行;②+=; ③+=;④=-2. 其中正確結(jié)論的個(gè)數(shù)是 ( C ) A.1 B.2 C.3 D.4 5.若向量a=(1,1),b=(-1,1),c=(4
8、,2),則c等于 ( B ) A.3a+b B.3a-b C.-a+3b D.a+3b 6.若向量a=(x,3)(x∈R),則“x=4”是“|a|=5”的 ( ) A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分又不必要條件 A [由x=4知|a|==5;由|a|==5,得x=4或x=-4.故“x=4”是“|a|=5”的充分而不必要條件.] 7.設(shè)a=,b=,且a∥b,則銳角α為 ( ) A.30° B.45° C.60° D.7
9、5° B [∵a∥b,∴×-sin αcos α=0, ∴sin 2α=1,2α=90°,α=45°.] 8.已知向量a=(6,-4),b(0,2),=c=a+λb,若C點(diǎn)在函數(shù)y=sin x的圖象上,則實(shí)數(shù)λ等于 ( ) A. B. C.- D.- A [c=a+λb=(6,-4+2λ),代入y=sin x得, -4+2λ=sin =1,解得λ=.] 9.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,則m=______
10、__. 解析 a+b=(1,m-1),由(a+b)∥c, 得1×2-(m-1)×(-1)=0,所以m=-1. 10.給定兩個(gè)長度為1的平面向量和,它們的夾角為120° .如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧上變動(dòng), 若=x+y,其中x,y∈R,則x+y的最大值是______. 解析 建立如圖所示的坐標(biāo)系, 則A(1,0),B(cos 120°,sin 120°), 即B(-,). 設(shè)=,則= (cos α,sin α). ∵=x+y =(x,0)+=(cos α,sin α). ∴ ∴ ∴x+y=sin α+cos α=2sin
11、(α+30°). ∵0°≤α≤120°,∴30°≤α+30°≤150°. ∴x+y有最大值2,當(dāng)α=60°時(shí)取最大值. 探究點(diǎn)一 平面向量基本定理的應(yīng)用 例1如圖,在平行四邊形ABCD中,M,N分別為 DC,BC的中點(diǎn),已知=c,=d,試用c,d 表示,. 解 方法一 設(shè)=a,=b,則a=+=d+, ① b=+=c+. ② 將②代入①得 a=d+ ∴a=d-c=(2d-c),代入② 得b=c+×(2d-c)=(2c-d). ∴=(2d-c),=(2c-d). 方法二 設(shè)=a,=b. 因M,N分別為CD,BC的中點(diǎn),所以=b,=a, 因而?, 即=(2d
12、-c),=(2c-d). 變式訓(xùn)練1 (1)如圖,平面內(nèi)有三個(gè)向量、、,其中與的夾角為120°,與的夾角為30°,且||=||=1,||=2,若=λ+μ(λ、μ∈R),則λ+μ的值為________. 解析 如右圖,=+ =λ+μ 在△OCD中,∠COD=30°,∠OCD=∠COB=90°, 可求||=4,同理可求||=2, ∴λ=4,μ=2,λ+μ=6. (2)在△ABC中,=,DE∥BC,與邊 AC相交于點(diǎn)E,△ABC的中線AM與DE相交于點(diǎn)N, 如圖,設(shè)=a,=b,試用a和b表示. 解 ∵=,DE∥BC,M為BC中點(diǎn),
13、∴===(b-a). 探究點(diǎn)二 平面向量的坐標(biāo)運(yùn)算 例2 已知A(-2,4),B(3,-1),C(-3,-4).設(shè)=a,=b,=c,且=3c,=-2b, (1)求3a+b-3c; (2) 求M、N的坐標(biāo)及向量的坐標(biāo). 解 由已知得a=(5,-5),b=(-6,-3),c=(1,8). (1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2) 設(shè)O為坐標(biāo)原點(diǎn),∵=-=3c, ∴=3c+=(3,24)+(-3,-4)=(0,20). ∴M(0,20).又∵=-=-2b, ∴=-2b+=(12,6)+(-3
14、,-4)=(9,2),∴N(9,2).∴=(9,-18). 變式訓(xùn)練2 (1) 已知點(diǎn)A(1,-2),若向量|與a=(2,3)同向,||=2,則點(diǎn)B的坐標(biāo)為________. 解析 ∵向量與a同向, ∴設(shè)=(2t,3t) (t>0). 由||=2,∴4t2+9t2=4×13.∴t2=4. ∵t>0,∴t=2.∴=(4,6). 設(shè)B為(x,y),∴ ∴(5,4) (2)已知平行四邊形三個(gè)頂點(diǎn)的坐標(biāo)分別為(-1,0),(3,0),(1,-5),求第四個(gè)頂點(diǎn)的坐標(biāo). 解 如圖所示,設(shè)A(-1,0),B(3,0),C(1,-5), D(x,y). (1)若四邊形ABCD
15、1為平行四邊形,則=, 而=(x+1,y),=(-2,-5). 由=,得 ∴∴D1(-3,-5). (2)若四邊形ACD2B為平行四邊形,則=2. 而=(4,0),2=(x-1,y+5). ∴∴∴D2(5,-5). (3)若四邊形ACBD3為平行四邊形,則3=. 而3=(x+1,y),=(2,5), ∴∴∴D3(1,5). 綜上所述,平行四邊形第四個(gè)頂點(diǎn)的坐標(biāo)為(-3,-5)或(5,-5)或(1,5). 探究點(diǎn)三 在向量平行下求參數(shù)問題 例3 已知平面內(nèi)三個(gè)向量:a=(3,2),b=(-1,2),c=(4,1). (1)求滿足
16、a=mb+nc的實(shí)數(shù)m、n; (2)若(a+kc)∥(2b-a),求實(shí)數(shù)k. (3)若d滿足(d-c)∥(a+b),且|d-c|=,求d. 解 (1)∵a=mb+nc,m,n∈R, ∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n). ∴ 解之得 (2)∵(a+kc)∥(2b-a), 且a+kc=(3+4k,2+k),2b-a=(-5,2), ∴(3+4k)×2-(-5)×(2+k)=0, ∴k=-. (3)設(shè)d=(x,y),d-c=(x-4,y-1), a+b=(2,4), 由題意得,解得或, ∴d=(3,-1)或d=(5,3). 變式訓(xùn)練3?。?/p>
17、1)已知向量a=(3,1),b=(1,3),c=(k,7),若(a-c)∥b,則k=________. 解析 ∵a-c=(3,1)-(k,7)=(3-k,-6), 且(a-c)∥b,∴=,∴k=5. (2)已知a=(1,0),b=(2,1). ①求|a+3b|; ②當(dāng)k為何實(shí)數(shù)時(shí),ka-b與a+3b平行,平行時(shí)它們是同向還是反向? 解?、?因?yàn)閍=(1,0),b=(2,1),所以a+3b=(7,3), ∴|a+3b|==. ②ka-b=(k-2,-1),a+3b=(7,3), 因?yàn)閗a-b與a+3b平行, 所以3(k-2)+7=0,即k=-. 此時(shí)ka-b=(k-2,-
18、1)=,
a+3b=(7,3),則a+3b=-3(ka-b),
即此時(shí)向量a+3b與ka-b方向相反.
(3)已知點(diǎn)O(0,0),A(1,2),B(4,5),=t1+t2,
①求點(diǎn)P在第二象限的充要條件.
②證明:當(dāng)t1=1時(shí),不論t2為何實(shí)數(shù),A,B,P三點(diǎn)共線;
③試求當(dāng)t1,t2滿足什么條件時(shí),O,A,B,P能組成一個(gè)平行四邊形.
①解 =t1(1,2)+t2(3,3)=(t1+3t2,2t1+3t2),
P在第二象限的充要條件是有解.∴-t2 19、 由=(t1+3t2,2t1+3t2),
得點(diǎn)P(t1+3t2,2t1+3t2),∴O,A,B,P能組成一個(gè)平行四邊形有三種情況.
當(dāng)=,有?;
當(dāng)=,
有?;
當(dāng)=,有?.
點(diǎn)評(píng):
1.在解決具體問題時(shí),合理地選擇基底會(huì)給解題帶來方便.在解有關(guān)三角形的問題時(shí),可以不去特意選擇兩個(gè)基本向量,而可以用三邊所在的三個(gè)向量,最后可以根據(jù)需要任意留下兩個(gè)即可,這樣思考問題要簡單得多.
2.平面直角坐標(biāo)系中,以原點(diǎn)為起點(diǎn)的向量=a,點(diǎn)A的位置被a所唯一確定,此時(shí)a的坐標(biāo)與點(diǎn)A的坐標(biāo)都是(x,y).向量的坐標(biāo)表示和以坐標(biāo)原點(diǎn)為起點(diǎn)的向量是一一對(duì)應(yīng)的,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開,相等的向 20、量坐標(biāo)是相同的,但起點(diǎn)、終點(diǎn)的坐標(biāo)可以不同,也不能認(rèn)為向量的坐標(biāo)是終點(diǎn)的坐標(biāo),如A(1,2),B(3,4),則=(2,2).
一、選擇題
1.已知a,b是不共線的向量,若=λ1a+b,=a+λ2b, (λ1,λ2∈R),則A、B、C三點(diǎn)共線的充要條件為 ( )
A.λ1=λ2=-1 B.λ1=λ2=1 C.λ1λ2-1=0 D.λ1λ2+1=0
1.C [∵A、B、C三點(diǎn)共線?與共線?=k?∴λ1λ2-1=0.]
2.若α,β是一組基底,向量γ=xα 21、+yβ(x,y∈R),則稱(x,y)為向量γ在基底α,β下的坐標(biāo),現(xiàn)已知向量a在基底p=(1,-1),q=(2,1)下的坐標(biāo)為(-2,2),則a在另一組基底m=(-1,1),n=(1,2)下的坐標(biāo)為 ( D )
A.(2,0) B.(0,-2) C.(-2,0) D.(0,2)
3.設(shè)兩個(gè)向量a=(λ+2,λ2-cos2α)和b=,其中λ、m、α為實(shí)數(shù).若a=2b,則的取值范圍是 ( )
A.[-6,1] B.[4,8] C.(-∞,1] D.[-1,6]
22、
3.A [∵2b=(2m,m+2sin α),∴λ+2=2m,
λ2-cos2α=m+2sin α,∴(2m-2)2-m=cos2α+2sin α,
即4m2-9m+4=1-sin2α+2sin α.
又∵-2≤1-sin2α+2sin α≤2,
∴-2≤4m2-9m+4≤2,解得≤m≤2,
∴≤≤4.又∵λ=2m-2, ∴=2-,∴-6≤2-≤1.]
4.設(shè)0≤θ≤2π時(shí),已知兩個(gè)向量=(cos θ,sin θ),=(2+sin θ,2-cos θ),則向量長度的最大值是 ( )
A. B. 23、C.3 D.2
5.在平行四邊形ABCD中,AC為一條對(duì)角線,若=(2,4),=(1,3),則等于( )
A.(-2,-4) B.(-3,-5) C.(3,5) D.(2,4)
二、填空題
6.如圖所示,在△ABC中,點(diǎn)O是BC的中點(diǎn).過點(diǎn)O的直線分別交直線AB、AC于不同的兩點(diǎn)M、N,若=m,=n,則m+n的值為______.
6.2
解析 方法一 若M與B重合,N與C重合,
則m+n=2.
方法二 ∵2=+=m+n,
==.∵O、M、N共線,∴+=1. ∴m+n=2.
7.在平面直角坐標(biāo)系xOy中,四邊形ABCD的邊AB∥DC,AD∥ 24、BC.已知A(-2,0),B(6,8),C(8,6),則D點(diǎn)的坐標(biāo)為________.(0,-2)
解析 設(shè)D點(diǎn)的坐標(biāo)為(x,y),
由題意知=,
即(2,-2)=(x+2,y),所以x=0,y=-2,∴D(0,-2)
8.在四邊形ABCD中,==(1,1),·+·=·,則四邊形ABCD的面積為________.
S=||=||sin 60°=××=.
三、解答題
9.(12分)已知A、B、C三點(diǎn)的坐標(biāo)分別為(-1,0)、(3,-1)、(1,2),并且=,=.求證:∥.
9.證明 設(shè)E、F兩點(diǎn)的坐標(biāo)分別為(x1,y1)、(x2,y2),則依題意,得=(2,2),=(-2,3 25、),=(4,-1).∴==,
==.∴=(x1,y1)-(-1,0)=,
=(x2,y2)-(3,-1)=.
∴(x1,y1)=+(-1,0)=,
(x2,y2)=+(3,-1)=.
∴=(x2,y2)-(x1,y1)=.
又∵=(4,-1),∴4×-(-1)×=0,∴∥.
10.在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,已知向量m=(a,b),向量n=(cos A,cos B),向量p=(2sin,2sin A),若m∥n,p2=9,求證:△ABC為等邊三角形.
證明 ∵m∥n,∴acos B=bcos A.
由正弦定理,得sin Acos B=sin Bcos
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中語文作文素材:30篇文學(xué)名著開場(chǎng)白
- 初中語文答題技巧:現(xiàn)代文閱讀-說明文閱讀知識(shí)點(diǎn)總結(jié)
- 初中語文作文十大??荚掝}+素材
- 初中語文作文素材:描寫冬天的好詞、好句、好段總結(jié)
- 初中語文必考名著總結(jié)
- 初中語文作文常見主題總結(jié)
- 初中語文考試常考名著總結(jié)
- 初中語文必考50篇古詩文默寫
- 初中語文易錯(cuò)易混詞總結(jié)
- 初中語文228條文學(xué)常識(shí)
- 初中語文作文素材:30組可以用古詩詞當(dāng)作文標(biāo)題
- 初中語文古代文化常識(shí)七大類別總結(jié)
- 初中語文作文素材:100個(gè)文藝韻味小短句
- 初中語文閱讀理解33套答題公式
- 初中語文228條文學(xué)常識(shí)總結(jié)