2022年高考數(shù)學第二輪復習 平面向量教學案

上傳人:xt****7 文檔編號:105678953 上傳時間:2022-06-12 格式:DOC 頁數(shù):6 大?。?05.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學第二輪復習 平面向量教學案_第1頁
第1頁 / 共6頁
2022年高考數(shù)學第二輪復習 平面向量教學案_第2頁
第2頁 / 共6頁
2022年高考數(shù)學第二輪復習 平面向量教學案_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學第二輪復習 平面向量教學案》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學第二輪復習 平面向量教學案(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學第二輪復習 平面向量教學案 考綱指要: 重點考察向量的概念、向量的幾何表示、向量的加減法、實數(shù)與向量的積、兩個向量共線的充要條件、向量的坐標運算等。 考點掃描: 1.向量的概念:①向量;②零向量;③單位向量;④平行向量(共線向量);⑤相等向量。 2.向量的運算:(1)向量加法;(2)向量的減法;(3)實數(shù)與向量的積。 3.基本定理:(1)兩個向量共線定理;(2)平面向量的基本定理。 4.平面向量的坐標表示。 5.向量的數(shù)量積:(1)兩個非零向量的夾角;(2)數(shù)量積的概念;(3)數(shù)量積的幾何意義;(4)向量數(shù)量積的性質(zhì);(5)兩個向量的數(shù)量積的坐標運算;(6

2、)垂直:如果與的夾角為900則稱與垂直,記作⊥。 6.向量的應用:(1)向量在幾何中的應用;(2)向量在物理中的應用。 考題先知: 例1. 已知二次函數(shù)f(x)=x2-2x+6,設向量a=(sinx,2),b=(2sinx,), c=(cos2x,1),d=(1,2).當x∈[0,π]時,不等式f(a·b)>f(c·d)的解集為___________. 解:a·b=2sin2x+1≥1, c·d=cos2x+1≥1 ,f(x)圖象關(guān)于x=1對稱, ∴f(x)在(1,+∞)內(nèi)單調(diào)遞增. 由f(a·b)>f(c·d)a·b>c·d,即2sin2x+1>2cos2x+1,

3、 又∵x∈[0,π] ,∴x∈().故不等式的解集為(). 例2.求函數(shù)的值域. 分析:由于向量溝通了代數(shù)與幾何的內(nèi)在聯(lián)系,因此本題利用向量的有關(guān)知識求函數(shù)的值域。 解:因為, 所以構(gòu)造向量,,則,而, 所以,得, 另一方面:由,得, 所以原函數(shù)的值域是. 點評:在向量這部分內(nèi)容的學習過程中,我們接觸了不少含不等式結(jié)構(gòu)的式子,如等。 類比一:已知,求的最值。 解:已知等式可化為,而,所以構(gòu)造向量,則,從而最大值為42,最小值為8。 類比二:計算之值。 解:構(gòu)造單位圓的內(nèi)接正五邊形ABCDE,使,, ,,,則可證 ,從而原式=0 類比三:已知實數(shù)滿足,求證:

4、。 解:構(gòu)造空間向量,即可。 復習智略: 例3.在直角坐標平面中,△ABC的兩個頂點為 A(0,-1),B(0, 1)平面內(nèi)兩點G、M同時滿足① , ②= = ③∥ (1)求頂點C的軌跡E的方程 (2)設P、Q、R、N都在曲線E上 ,定點F的坐標為(, 0) ,已知∥ , ∥且·= 0.求四邊形PRQN面積S的最大值和最小值. 解:(1)設C ( x , y ), ,由①知, G為 △ABC的重心 , G(,) 由②知M是△ABC的外心,M在x軸上 由③知M(,0), 由 得 化簡整理得:(x≠0 ) (2)F(,0

5、)恰為的右焦點 設PQ的斜率為k≠0且k≠±,則直線PQ的方程為y = k ( x -) 由 設P(x1 , y1) ,Q (x2 ,y2 ) 則x1 + x2 = , x1·x2 = 則| PQ | = · = · = RN⊥PQ,把k換成得 | RN | = S =| PQ | · | RN |= =) ≥2 , ≥16≤ S < 2 , (當 k = ±1時取等號) 又當k不存在或k = 0時S = 2 綜上可得 ≤ S ≤ 2

6、 Smax = 2 , Smin = 檢測評估: 1.設為單位向量,(1)若為平面內(nèi)的某個向量,則=||·;(2)若與a0平行,則=||·;(3)若與平行且||=1,則=。上述命題中,假命題個數(shù)是( ) A.0 B.1 C.2 D.3 2.已知直線與圓相交于A、B兩點,且,則 =( ) A。 B。 C。 D。 3.設點O(0,0)、A(1,0)、B(0,1),點P是AB上的一個動點,,若,則實數(shù)的取值范圍是( ) (A). (B). (C). (D). 4.已知雙曲線的左右兩焦點分別為,是雙曲線右

7、支上的一點, 點滿足,在上的投影的大小恰為,且它們的夾角為,則等于 A. B. C. D. 5.已知向量,當時,求的集合( )A。 B。 C。 D。 6.已知|a|=,|b|=3,a與b夾角為,求使向量a+b?與a+b的夾角是銳角時,則的取值范圍是 7.設且,則的最小值等于 8.已知點O為所在平面內(nèi)的一定點,其中點A、B、C不共線,動點P滿足,其中。則________-(填空內(nèi)心、外心、垂心、重心之一)。 9.已知,其中。若與()的長度相等,則=

8、 。 10,設平面上的向量滿足關(guān)系,,又設與的模為1,且互相 垂直,則與的夾角為 . 11.設軸、軸正方向上的單位向量分別是、,坐標平面上點、分別滿足下列兩個條件: ①且=+;②且=. (1)求及的坐標; (2)若四邊形的面積是,求的表達式; (3)對于(2)中的,是否存在最小的自然數(shù)M,對一切都有<M成立?若存在,求M;若不存在,說明理由. 12. 在平面直角坐標系中,已知向量 |動點P同時滿足下列三個條件: (1)· (3)動點P的軌跡C經(jīng)過點B(0,-1). (Ⅰ)求曲線C的方程; (Ⅱ)是否存在

9、方向向量為m=(1,k)(k≠0)的直線l,l與曲線C相交于M、N兩點,使|60°?若存在,求出k值,并寫出直線l的方程;若不存在,請說明理由. 點撥與全解: 1.解:向量是既有大小又有方向的量,與||模相同,但方向不一定相同,故(1)是假命題;若與平行,則與方向有兩種情況:一是同向二是反向,反向時=-||,故(2)、(3)也是假命題。綜上所述,答案選D。 2.解:易知,所以。故選B。 3.解:因點,原不等式化為,又知,故選B。 4.解:因為,所以是一對同向向量,且. 又因為在上的投影的大小恰為,所以. 在中,又, 所以,所以,故選A. 5.解:由得,,故選B

10、。 6.解:∵ |a|=,|b|=3 ,a與b夾角為∴ 而(a+b)·(a+b)= 要使向量a+b?與a+b的夾角是銳角,則(a+b)·(a+b)>0 即 從而得 7.解:構(gòu)造向量,則由得。 8.由已知等式得:,可證 ,從而,所以動點P有軌跡一定經(jīng)過的垂心。 9.解:, , 所以, , 因為, 所以, 有, 因為,故, 又因為, 所以。 a b 1 10, 由已知解得, 由 可得的值. 11.解:(1). . (2) . (3) . ∴ ,,.

11、, ,,等等. 即在數(shù)列中,是數(shù)列的最大項,所以存在最小的自然數(shù),對一切,都有<M成立. 12.(1)∵| ∴ 由 由(1)、(2)可知點P到直線x=再由橢圓的第二定義可知,點P的軌跡是橢圓,橢圓C的方程為: 由(3)可知b=1,∴a2=b2+c2=1+2=3. ∴橢圓C的方程為:y= (2)設直線l的方程為:y=kx+m, x1+x2=- Δ=36k2m2-12(m2-1)(1+3k2)=12[3k2-m2+1]>0 ① 線段MN的中點G(x0,y0),  x0= 線段MN的垂直平分線的方程為:y- ∵|∴線段MN的垂直平分線過B(0,-1)點, ∴-1-∴m=② ②代入①,得3k2-(③ ∵|°,∴△BMN為等邊三角形, ∴點B到直線MN的距離d= |MN|= = ∴ 解得k2=③式.代入②,得m= 直線l的方程為:y=

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!