《2022年高考數(shù)學(xué)三輪沖刺 數(shù)列課時(shí)提升訓(xùn)練(3)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)三輪沖刺 數(shù)列課時(shí)提升訓(xùn)練(3)(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)三輪沖刺 數(shù)列課時(shí)提升訓(xùn)練(3)
1、已知數(shù)列為等差數(shù)列,為等比數(shù)列,且滿足:,,則
A.1??? ???????????? B.??????????? C.?? ???????? D.
2、已知等差數(shù)列,首項(xiàng),,則使數(shù)列的前n項(xiàng)和成立的最大正整數(shù)n是(?? )A.2011?????????? B.xx?????? C.4023?????????? D.4022
3、(xx年高考(湖北理))定義在上的函數(shù),如果對于任意給定的等比數(shù)列, 仍是等比數(shù)列,則稱為“保等比數(shù)列函數(shù)”. 現(xiàn)有定義在上的如下函數(shù):①;?? ②;??? ③;??? ④.則其中是“保等比數(shù)列函數(shù)”的
2、的序號(hào)為? ( ?。?
A.① ② B.③ ④ C.① ③ D.② ④?
4、(xx年高考(北京文))已知為等比數(shù)列.下面結(jié)論中正確的是???? ( )
A.???? B. C.若,則????? D.若,則
5、(xx年高考(江西文))觀察下列事實(shí)|x|+|y|=1的不同整數(shù)解(x,y)的個(gè)數(shù)為4 , |x|+|y|=2的不同整數(shù)解(x,y)的個(gè)數(shù)為8, |x|+|y|=3的不同整數(shù)解(x,y)的個(gè)數(shù)為12 .則|x|+|y|=20的不同整數(shù)解(x,y)的個(gè)數(shù)為????? ( ?。〢.76 B.80 C.86 D.92
6、(xx年高考(上海理))設(shè),. 在中,正數(shù)的個(gè)數(shù)是????
3、? ( ?。?
A.25.????? B.50. C.75.????? D.100.
7、(xx年高考(四川理))設(shè)函數(shù),是公差為的等差數(shù)列,,則???? ( ?。〢.? B.?? C.?? ??? D.
8、在等差數(shù)列{}中,,,若此數(shù)列的前10項(xiàng)和,前18項(xiàng)和,則數(shù)列{}的前18項(xiàng)和的值是(?? )A.24?????????? B.48 ???????C.60???????????? D.84
9、已知無窮數(shù)列{an}是各項(xiàng)均為正數(shù)的等差數(shù)列.則有
?????? A、 ????????? B、 ??????????? C、 ??????????? D、
10、已知數(shù)列滿足
4、:,那么使成立的的最大值為( ??)
(A)4?????????? (B)5???????? (C)24?????? (D)25
11、設(shè)數(shù)列為等差數(shù)列,其前n項(xiàng)和為Sn,已知,若對任意,都有成立,則k的值為(?? )A.22??????? B.21??????? C.20??????? D.19
12、等差數(shù)列{an}中,a5<0,a6>0且a6>|a5|,Sn是數(shù)列的前n項(xiàng)的和,則下列正確的是 ???????????? ( ???)
?????? A.S1,S2,S3均小于0, S4,S5…均大于0????? ? B.S1,S2,…S5均小于0 , S4,S5 …均大于0
?
5、????? C.S1,S2,S3…S9均小于0 , S10,S11 …均大于0??? ???? D.S1,S2,S3…S11均小于0 ,S12,S13 …均大于0
13、若,則? (??? )
A.0?????? ????????? B.-2?????? ????????? C.-1?????????? D.2
14、已知是等差數(shù)列,為其前項(xiàng)和,若,為坐標(biāo)原點(diǎn),點(diǎn),,則(??? ).
??? A.???????????????? B.???????? ????????C.??????????? D.
15、定義:若數(shù)列對任意的正整數(shù)n,都有(d為常數(shù)),則稱為“絕對和數(shù)列”,d
6、叫做“絕對公和”,已知“絕對和數(shù)列”,“絕對公和”,則其前xx項(xiàng)和的最小值為
?????? A.-xx? B.-xx ??????? C-2011? ?????? D.-xx
16、已知等差數(shù)列的前n項(xiàng)和為,若M、N、P三點(diǎn)共線,O為坐標(biāo)原點(diǎn),且(直線MP不過點(diǎn)O),則S20等于(??? )??? A.10???? B.15???? C.20???? D.40
17、已知數(shù)列的通項(xiàng)公式是,若對于,都有成立,則實(shí)數(shù)的取值范圍是?????????? ?????????????????????????????????? (??? )?????? A.????????? ? B.?????
7、??? ?? C.???? ? D.??
18、已知不等式對一切大于1的自然數(shù)n都成立,則的取值范圍是(????? )
? A.?????? B.??????????? C. ??????????D.
19、已知數(shù)列為等差數(shù)列,數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,且公比,若,,則與的大小關(guān)系為(?? ?)A.????? B.????? C.????? D.無法判斷
20、已知數(shù)列滿足,則的值是??????????????????? A.-5?????????????? B.?????????? C.?????????? D.
21、設(shè)等差數(shù)列的前項(xiàng)和為,若,,則,,,中最大的是
8、A.?????????? B.????????? ??C.?????????? D.
22、設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,令,稱Tn為數(shù)列a1,a2,…,an的“理想數(shù)”.已知a1,a2,…,a500的“理想數(shù)”為1002,那么數(shù)列3,a1,a2,….a(chǎn)500的“理想數(shù)”為?????(??? )? A.1001???????? ?????? B.1003 ???????????? C.1004????????? ???? D.1005
23、數(shù)列的前項(xiàng)和,則當(dāng)時(shí),有(????? )
(A)???? ????????????? (B)(C)?????????????????? (D)
9、
24、已知為一等差數(shù)列,為一等比數(shù)列,且這6個(gè)數(shù)都為實(shí)數(shù),給出結(jié)論:
?????? ①與可能同時(shí)成立;????????????? ②與可能同時(shí)成立;
?????? ③若,則; ???????????? ④若,則.
?????? 其中正確的是????????????????? (??? )?? A.①③??????????? B.②④?????? ????????? C.①④???????? ????? D.②③
25、已知數(shù)列的通項(xiàng)公式,設(shè)其前項(xiàng)和為,則使成立的自然數(shù)n有
A. 最大值15?????????????? B. 最小值15??????????????? C. 最大
10、值16?????????????? D. 最小值16
26、已知數(shù)列的通項(xiàng)公式,設(shè)其前項(xiàng)和為,則使成立的自然數(shù)有
?????? A. 最大值15????????????????????? B. 最小值15??????????????? C. 最大值16??????? D. 最小值16
27、若數(shù)列滿足為常數(shù),,則稱數(shù)列為等方比數(shù)列.已知甲:是等方比數(shù)列,乙:為等比數(shù)列,則命題甲是命題乙的???????????????? (??? )
A.充要條件? ???????????????? B.充分不必要條件? ?????? C.必要不充分條件?? ??????????????????????
11、???????????? D.既不充分又不必要條件
28、已知函數(shù)的圖象在點(diǎn)處的切線L與直線平行,若數(shù)列
的前n項(xiàng)和為,則的值為???????(??? )A. ?????????????B. ??????????????C. ??????????????D.
29、在數(shù)列中,,若(為常數(shù)),則稱為“等差比數(shù)列”.下列是對“等差比數(shù)列”的判斷:
?????? ①不可能為0????? ②等差數(shù)列一定是等差比數(shù)列 ③等比數(shù)列一定是等差比數(shù)列? ?????? ④等差比數(shù)列中可以有無數(shù)項(xiàng)為0
?????? 其中正確的判斷是??????????????????????????? (??? )
12、 A.①??? ???? B.①②③ ?? C.③④?????? ?? D.①④
30、設(shè)是以2為首項(xiàng),1為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,記+ … +,則數(shù)列中不超過xx的項(xiàng)的個(gè)數(shù)為????????? ( ???)A.8????????????????????????????????????????????????????? B.9? C.10???? D.11
31、在△ABC中,a,b,c分別為角A,B,C的對邊,且cos2B+cosB+cos(A-C)=1,則
?A.a(chǎn),b,c成等差數(shù)列???? B.a(chǎn),b,c成等比數(shù)列C.a(chǎn),c,b成等差數(shù)列???? D.a(chǎn)
13、,c,b成等比數(shù)列
32、已知函數(shù)的圖象在點(diǎn)處的切線與直線平行,若數(shù)列的前n項(xiàng)和為,則的值為??????????? (??? )A.???????????????????? B.???????????????????? C.???????????????????? D.
33、數(shù)列滿足下列條件:,且對于任意的正整數(shù),恒有,則的值為???????????????????? (??? )A.1??? ???????????????????? B.299 ???????????????????? C.2100??? ???????????????? D.
34、設(shè){an}是任意等比數(shù)列,
14、它的前n項(xiàng)和、前2n項(xiàng)和與前3n項(xiàng)和分別為X、Y、Z,則下列等式中恒成立的是(??? )
A.X+Z=2Y?????? B.Y(Y-X)=Z(Z-X)??????? C.Y2=XZ??? D.Y(Y-X)=X(Z-X)
35、在等差數(shù)列中,若,則的值為? (??? )???
?A.14??????? B.15 ?????? C.16?????? ????? D.17
36、在等比數(shù)列中,若則=(?? )??
A.??? B.??? ?????? C.? ???? D.
37、設(shè)數(shù)列為等差數(shù)列,其前n項(xiàng)和為Sn,已知,若對任意,都有成立,則k的值為(?? )A.22????
15、B.21????? C.20????? D.19
38、已知等比數(shù)列的前項(xiàng)和為,若,且滿足,則使的的最大值為(?? )(A)6????????????? (B)7????????? ????(C)8???? ??????????(D)9
39、已知數(shù)列的前項(xiàng)和,則數(shù)列的奇數(shù)項(xiàng)的前項(xiàng)和為
A. ?????????B. ????????C. ???????D.
40、若不等式對于任意正整數(shù)n恒成立,則實(shí)數(shù)a的取值范圍是(??? )
A.? ?????? B. ???? C.??? ????? D.
1、D ?? 2、D 3、C考點(diǎn)分析:本題考察等比數(shù)列性質(zhì)及函數(shù)計(jì)算.
解析
16、:等比數(shù)列性質(zhì),,①; ②;③;④.選C
4、B 【解析】當(dāng)時(shí),可知,所以A選項(xiàng)錯(cuò)誤;當(dāng)時(shí),C選項(xiàng)錯(cuò)誤;當(dāng)時(shí),,與D選項(xiàng)矛盾.因此根據(jù)均值定理可知B選項(xiàng)正確.
5、B 6、D【解析】 對于1≤k≤25,ak≥0(唯a25=0),所以Sk(1≤k≤25)都為正數(shù). 當(dāng)26≤k≤49時(shí),令,則,畫出ka終邊如右, 其終邊兩兩關(guān)于x軸對稱,即有, 所以+++++0 +++
=+++++
+,其中k=26,27,,49,此時(shí),
所以,又,所以,
從而當(dāng)k=26,27,,49時(shí),Sk都是正數(shù),S50=S49+a50=S49+0=S49>0.
對于k從51到100的情況同上可知Sk都是正數(shù). 綜上,可選D.
7、D 【解析】∵數(shù)列{an}是公差為的等差數(shù)列,且
∴
∴? 即 ?得
∴
8、C 9、.C?? 10、C 11、答案:C? 12、C 13、?C 14、A 15、A 16、A 17、D 18、A 19、B 20、A 21、B 22、B 23、D 24、B
25、D 26、D 27、C 28、D 29、D 30、C 31、B 32、A 33、 34、D
35、C 36、B 37、C 38、D 39、C 40、A