2022年高三數(shù)學(xué)上學(xué)期第四次月考試題 文(含解析)新人教A版

上傳人:xt****7 文檔編號:105230891 上傳時間:2022-06-11 格式:DOC 頁數(shù):9 大小:193.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學(xué)上學(xué)期第四次月考試題 文(含解析)新人教A版_第1頁
第1頁 / 共9頁
2022年高三數(shù)學(xué)上學(xué)期第四次月考試題 文(含解析)新人教A版_第2頁
第2頁 / 共9頁
2022年高三數(shù)學(xué)上學(xué)期第四次月考試題 文(含解析)新人教A版_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)上學(xué)期第四次月考試題 文(含解析)新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)上學(xué)期第四次月考試題 文(含解析)新人教A版(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)上學(xué)期第四次月考試題 文(含解析)新人教A版 【試卷綜述】本次數(shù)學(xué)試卷的特點是具有一定的綜合性,很多題目是由多個知識點構(gòu)成的,這有利于考查考生對知識的綜合理解能力,有利于提高區(qū)分度,在適當(dāng)?shù)囊?guī)劃和難度控制下,效果明顯。通過考查知識的交匯點,對考生的數(shù)學(xué)能力提出了較高的要求,提高了試題的區(qū)分度,這和當(dāng)前課改的教學(xué)要求、中學(xué)的教學(xué)實際以及學(xué)生學(xué)習(xí)的實際情況是吻合的. ? 【題文】一、選擇題(每小題5分,10小題,共50分) 【題文】1. 已知R是實數(shù)集,,則N∩?RM=(  )   A. (1,2) B. [0,2] C. (0,2) D. [1,2]

2、 【知識點】集合 A1 【答案】【解析】D 解析:∵M={x|<1}={x|x<0,或x>2},N={y|y=+1}={y|y≥1 }, CRM={x|0≤x≤2},故有 N∩CRM={y|y≥1 }∩{x|0≤x≤2}=[1,+∞)∩[0,2]=[1,2], 故選D. 【思路點撥】根據(jù)已知條件分別求出集合,再求兩個集合的交集. 【題文】2. 是z的共軛復(fù)數(shù),若z+=2,(z﹣)i=2(i為虛數(shù)單位),則z=(  )   A. 1+i B. ﹣1﹣i C. ﹣1+i D. 1﹣i 【知識點】復(fù)數(shù)的運算 L4 【答案】【解析】D 解析:由于,(z﹣)

3、i=2,可得z﹣=﹣2i ① 又z+=2 ② 由①②解得z=1﹣i 故選D. 【思路點撥】根據(jù)復(fù)數(shù)的運算可直接計算出復(fù)數(shù)z. 【題文】3. 已知命題p:函數(shù)y=ax+1+1(a>0且a≠1)的圖象恒過(﹣1,2)點;命題q:已知平面α∥平面β,則直線m∥α是直線m∥β的充要條件;則下列命題為真命題的是( ?。?   A. p∧q B. ¬p∧¬q C. ¬p∧q D. p∧¬q 【知識點】命題 A2 【答案】【解析】D 解析:當(dāng)x+1=0時,x=﹣1,此時y=1+1=2,即函數(shù)y=ax+1+1(a>0且a≠1)的圖象恒過(﹣1,2)點,即命題p為真命題.

4、 若直線m∥α,則m∥β或m?β,充分性不成立,若直線m∥β,則m∥α或m?α,必要性不成立, 即直線m∥α是直線m∥β的既不充分也不必要條件,即命題q為假命題, 則p∧¬q為真命題, 故選:D. 【思路點撥】由題意可依據(jù)直線與平面平行的判定確定命題的真?zhèn)?,再找出正確選項. 【題文】4. 運行如圖所示的程序,若結(jié)束時輸出的結(jié)果不小于3,則t的取值范圍為( ?。?   A. B. C. D. 【知識點】程序框圖 L1 【答案】【解析】B 解析:第一次執(zhí)行循環(huán)結(jié)構(gòu):n←0+2,x←2×t,a←2﹣1;∵n=2<4,∴繼續(xù)執(zhí)行循環(huán)結(jié)構(gòu). 第二次執(zhí)行循環(huán)結(jié)

5、構(gòu):n←2+2,x←2×2t,a←4﹣1;∵n=4=4,∴繼續(xù)執(zhí)行循環(huán)結(jié)構(gòu), 第三次執(zhí)行循環(huán)結(jié)構(gòu):n←4+2,x←2×4t,a←6﹣3; ∵n=6>4,∴應(yīng)終止循環(huán)結(jié)構(gòu),并輸出38t.由于結(jié)束時輸出的結(jié)果不小于3, 故38t≥3,即8t≥1,解得t.故答案為:B. 【思路點撥】按程序所給定的過程進行計算,可直接求出結(jié)果. 【題文】5. 一個體積為12的正三棱柱的三視圖如圖所示,則這個三棱柱的側(cè)視圖的面積為( ?。?   A. 6 B. 8 C. 8 D. 12 【知識點】三視圖 G2 【答案】【解析】A 解析:設(shè)棱柱的高為h, 由左視圖知,底面正三角形的

6、高是 ,由正三角形的性質(zhì)知,其邊長是4, 故底面三角形的面積是 =4 由于其體積為 ,故有h×=,得h=3 由三視圖的定義知,側(cè)視圖的寬即此三棱柱的高,故側(cè)視圖的寬是3,其面積為3×= 故選A 【思路點撥】由三視圖可找出幾何體的原圖數(shù)據(jù),再計算出三棱柱的面積. 【題文】6. 在下列直線中,與非零向量=(A,B)垂直的直線是(  )   A. Ax+By=0 B. Ax﹣By=0 C. Bx+Ay=0 D. Bx﹣Ay=0 【知識點】向量的運算 F2 【答案】【解析】A 解析:Ax+By=0的方向向量是(﹣B,A), Ax﹣By=0的方向向量是(B,A

7、),Bx+Ay=0的方向向量是(﹣A,B),Bx﹣Ay=0的方向向量是(A,B),∴與非零向量=(A,B)垂直的直線是Ax+By=0. 故選:A. 【思路點撥】由向量的定義與直線相互垂直的關(guān)系可求出正確結(jié)果. 【題文】7. 在△ABC中,∠BAC=60°,AB=2,AC=1,E,F(xiàn)為邊BC的三等分點,則=( ?。?   A. B. C. D. 【知識點】向量的加減運算 F2 【答案】【解析】A 解析:∵在△ABC中,∠BAC=60°,AB=2,AC=1, ∴根據(jù)余弦定理可知BC= 由AB=2,AC=1,BC=滿足勾股定理可知∠BCA=90° 以C為

8、坐標(biāo)原點,CA、CB方向為x,y軸正方向建立坐標(biāo)系 ∵AC=1,BC=,則C(0,0),A(1,0),B(0,) 又∵E,F(xiàn)分別是Rt△ABC中BC上的兩個三等分點, 則E(0,),F(xiàn)(0,)則=(﹣1,),=(﹣1,)∴=1+= 故選A. 【思路點撥】根據(jù)向量運算的三角形法則可分別求出,的坐標(biāo),再求出它們的數(shù)量積. 【題文】8. 設(shè)二次函數(shù)f(x)=ax2﹣4x+c(x∈R)的值域為[0,+∞),則的最小值為(  )   A. 3 B. C. 5 D. 7 【知識點】基本不等式 E6 【答案】【解析】A 解析:由題意知,a>0,△=1﹣4ac=0,∴a

9、c=4,c>0, 則 則≥2×=3,當(dāng)且僅當(dāng)時取等號, 則的最小值是 3. 故選A. 【思路點撥】由已知條件求出ac的值,再由基本不等式可求出的最小值. 【題文】9. 已知函數(shù)f(x)=x2+bx的圖象在點A(1,f(1))處的切線l與直線3x﹣y+2=0平行,若數(shù)列的前n項和為Tn,則Txx的值為( ?。?   A. B. C. D. 【知識點】數(shù)列與數(shù)列求和 D4 【答案】【解析】C 解析:∵函數(shù)f(x)=x2+bx的圖象在點A(1,f(1))處的切線l與直線3x﹣y+2=0平行, 由f(x)=x2+bx求導(dǎo)得:f′(x)=2x+b, 由導(dǎo)

10、函數(shù)得幾何含義得:f′(1)=2+b=3?b=1,∴f(x)=x2+x 所以f(n)=n(n+1),∴數(shù)列 的通項為 ==, 所以 的前n項的和即為Tn, 則利用裂項相消法可以得到:=1﹣ 所以數(shù)列的前xx項的和為:Txx=. 故選C. 【思路點撥】根據(jù)條件可求出函數(shù)與數(shù)列的關(guān)系,再利用裂項求和法求出數(shù)值. 【題文】10. 如圖所示是某一容器的三視圖,現(xiàn)向容器中勻速注水,容器中水面的高度h隨時間t變化的可能圖象是( ?。?   A. B. C. D. 【知識點】三視圖 G2 【答案】【解析】B 解析:該三視圖表示的容器是倒放的圓錐,下面細,上

11、面粗, 隨時間的增加,可以得出高度增加的越越慢. 剛開始高度增加的相對快些.曲線越“豎直”,之后,高度增加的越越慢,圖形越平穩(wěn). 故選B. 【思路點撥】由三視圖得到容器的形狀,再由幾何體的體積變化得到正確結(jié)果. 二、填空題(每小題5分,5小題,共25分) 【題文】11. 已知tan(﹣α)=,則cos(+2α)的值為  . 【知識點】三角函數(shù)的誘導(dǎo)公式 C2 【答案】【解析】C 解析:設(shè)t=﹣α,即α=﹣t,tant=, 則cos(+2α)=cos(π﹣2t)=﹣cos2t=﹣=﹣. 故答案為:﹣. 【思路點撥】由已知條件可利用整體變換角的形式化簡求值. 【題文】

12、12. 有五條線段,長度分別為1,3,5,7,9,從中任意取三條,一定能構(gòu)成三角形的概率是 ?。? 【知識點】概率 K2 K3 【答案】【解析】C 解析:顯然共有1,3,5;1,3,7;1,3,9;1,5,7;1,5,9;1,7,9;3,5,7;3,5,9;3,7,9;5,7,9. 共10種情況. 根據(jù)三角形的三邊關(guān)系:任意兩邊之和大于第三邊,任意兩邊之差小于第三邊. 其中能構(gòu)成三角形的有3,5,7;3,7,9;5,7,9.三種情況,故概率是. 故填:. 【思路點撥】由已知求出各各種情況,再根據(jù)概率的定義求值即可. 【題文】13. 若實數(shù)x,y滿足的最小值是 ?。?

13、【知識點】簡單的線性規(guī)劃 E5 【答案】【解析】C 解析:令t=x+2y 作出不等式組表示的平面區(qū)域,如圖所示 由于t=x+2y可得y=,根據(jù)直線在y軸上的截距越大,t越大 ∴直線t=x+2y平移到點O(O,0)時,t取得最小值0,此時,z=1 故答案為:1 【思路點撥】由已知條件可求出可行域,再求出最小值. 【題文】14. 圓心在直線x﹣2y=0上的圓C與y軸的正半軸相切,圓C截x軸所得弦的長為2,則圓C的標(biāo)準(zhǔn)方程為 ?。? 【知識點】圓的標(biāo)準(zhǔn)方程 H3 【答案】【解析】C 解析:設(shè)圓心為(2t,t),半徑為r=|2t|, ∵圓C截x軸所得弦的長為2,

14、∴t2+3=4t2, ∴t=±1,其中t=﹣1不符合題意,舍去, 故t=1,2t=2, ∴(x﹣2)2+(y﹣1)2=4. 故答案為:(x﹣2)2+(y﹣1)2=4. 【思路點撥】根據(jù)已知條件可求出圓心到直線的距離、半徑及弦的一半的關(guān)系求出圓心坐標(biāo),再列出方程. 【題文】15. ①函數(shù)在[0,π]上是減函數(shù); ②點A(1,1)、B(2,7)在直線3x﹣y=0兩側(cè); ③數(shù)列{an}為遞減的等差數(shù)列,a1+a5=0,設(shè)數(shù)列{an}的前n項和為Sn,則當(dāng)n=4時,Sn取得最大值; ④定義運算則函數(shù)的圖象在點處的切線方程是6x﹣3y﹣5=0. 其中正確命題的序號是 ?。ò阉姓_命

15、題的序號都寫上). 【知識點】三角函數(shù);數(shù)列;函數(shù)的性質(zhì) B1 C3 D1 【答案】【解析】C 解析:①,∵y=sin(x﹣)=﹣cosx,在[0,π]上是增函數(shù),故①錯誤; ②,將A(1,1)、B(2,7)的坐標(biāo)分別代入3x﹣y得(3×1﹣1)?(3×2﹣7)=﹣2<0,故點A(1,1)、B(2,7)在直線3x﹣y=0兩側(cè),即②正確; ③,∵數(shù)列{an}為遞減的等差數(shù)列,a1+a5=0,又a1+a5=2a3, ∴2a3=0, 故當(dāng)n=2或3時Sn取得最大值,故③錯誤; ④,∵=a1b2﹣a2b1, ∴f(x)==x3+x2﹣x, ∴[f′(x)]|x=1=(x

16、2+2x﹣1)|x=1=2, ∴f(x)的圖象在點(1,)處的切線方程為:y﹣=2(x﹣1),整理得:6x﹣3y﹣5=0,故④正確; 綜上所述,正確答案為②④. 故答案為:②④. 【思路點撥】根據(jù)已知條件對各項進行分析判定,最后找出正確結(jié)果. 三、解答題(6小題,共75分) 【題文】16. 已知函數(shù)(其中ω為正常數(shù),x∈R)的最小正周期為π. (I)求ω的值; (II)在△ABC中,若A<B,且,求. 【知識點】三角函數(shù)的化簡求值 C7 【答案】【解析】(I) ω=1 (II) 解析: ==.(4分) 而f(x)的最小正周期為π,ω為正常數(shù), ∴,解之,得ω=1.

17、(6分) (2)由(1)得. 若x是三角形的內(nèi)角,則0<x<π,∴. 令,得,∴或, 解之,得或.由已知,A,B是△ABC的內(nèi)角,A<B且, ∴,,∴.(10分) 又由正弦定理,得.(12分) 【思路點撥】首先根據(jù)已知條件對函數(shù)式進行化簡,根據(jù)化簡結(jié)果求出的值,再根據(jù)條件求出三角形的三個角,利用正弦定理可求出 【典例剖析】求三角函數(shù)周期的問題,一般要化成一個三角函數(shù)式,再對周期進行求解. 【題文】17. 甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下: 甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓

18、心角均為15°,邊界忽略不計)即為中獎. 乙商場:從裝有3個白球3個紅球的盒子中一次性摸出2球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即為中獎. 問:購買該商品的顧客在哪家商場中獎的可能性大? 【知識點】概率 K1 K2 K3 【答案】【解析】 P1<P2,則購買該商品的顧客在乙商場中獎的可能性大 解析:如果顧客去甲商場,試驗的全部結(jié)果構(gòu)成的區(qū)域為圓盤的面積π?R2, 陰影部分的面積為, 則在甲商場中獎的概率為:; 如果顧客去乙商場,記3個白球為a1,a2,a3,3個紅球為b1,b2,b3, 記(x,y)為一次摸球的結(jié)果,則一切可能的結(jié)果有: (a1,a2),

19、(a1,a3),(a1,b1),(a1,b2),(a1,b3) (a2,a3),(a2,b1),(a2,b2),(a2,b3), (a3,b1),(a3,b2),(a3,b3), (b1,b2),(b1,b3), (b2,b3),共15種, 摸到的是2個紅球有(b1,b2),(b1,b3),(b2,b3),共3種, 則在乙商場中獎的概率為:P2=, 又P1<P2,則購買該商品的顧客在乙商場中獎的可能性大. 【思路點撥】甲商場中獎概率為幾何概型,可根據(jù)面積來求,乙商場可根據(jù)結(jié)果求出概率. 【題文】18. 如圖,在直三棱柱ABC﹣A1B1C1中,AB=2,AC=AA1=4,∠AB

20、C=90°. (I)求三棱柱ABC﹣A1B1C1的表面積S; (II)求異面直線A1B與AC所成角的余弦值. 【知識點】幾何體的表面積;異面直線所成的角 G7 G11 【答案】【解析】(I) 24+12 (II) 解析:(1)在△ABC中,因為AB=2,AC=4,∠ABC=90°,所以BC=.…(1分) S△ABC=AB×BC=2.…(1分) 所以S=2S△ABC+S側(cè)=4+(2+2+4)×4=24+12.…(3分) (2)連接BC1,因為AC∥A1C1,所以∠BA1C1就是異面直線A1B與AC所成的角(或其補角).…(1分) 在△A1BC1中,A1B=2,BC1=2,

21、A1C1=4,…(1分) 由余弦定理可得cos∠BA1C1= 【思路點撥】根據(jù)幾何體的表面積的構(gòu)成可直接求出結(jié)果,第二步先找出異面直線所成的角,再利用余弦定理求出其余弦值. 【題文】19. 已知等差數(shù)列{an}的首項a1=1,公差d>0,且a2,a5,a14分別是等比數(shù)列{bn}的b2,b3,b4. (Ⅰ)求數(shù)列{an}與{bn}的通項公式; (Ⅱ)設(shè)數(shù)列{cn}對任意自然數(shù)n均有=an+1成立,求c1+c2+…+cxx的值. 【知識點】數(shù)列的通項公式;數(shù)列求和 D2 D3 D4 【答案】【解析】(I)(II) 解析:(Ⅰ)∵a2=1+d,a5=1+4d,a14=

22、1+13d, ∵a2,a5,a14成等比數(shù)列,∴(1+4d)2=(1+d)(1+13d), 解得d=2,∴an=1+(n﹣1)×2=2n﹣1;又b2=a2=3,b3=a5=9,∴q=3,b1=1,∴bn=3n﹣1. (Ⅱ)∵++…+=an+1,∴=a2,即c1=b1a2=3,又++…+=an(n≥2), ∴=an+1﹣an=2(n≥2),∴cn=2bn=2?3n﹣1(n≥2),∴cn=. ∴c1+c2+…+cxx=3+2?3+2?32+…+2?3xx=3+2(3+?32+…+3xx) =3+2?=3xx. 【思路點撥】根據(jù)已知條件列出等差數(shù)列與等比數(shù)列的關(guān)系式,求出公差與公比,寫

23、出通項公式,找出數(shù)列{cn}的特點,再根據(jù)條件求出數(shù)值. 【題文】20. 如圖,AB為圓O的直徑,點E、F在圓O上,且AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=AF=1. (I)求四棱錐F﹣ABCD的體積VF﹣ABCD. (II)求證:平面AFC⊥平面CBF. (III)在線段CF上是否存在一點M,使得OM∥平面ADF,并說明理由. \ 【知識點】幾何體的體積;面面垂直的判定;線面平行的判定 G4 G5 G7 【答案】【解析】(I)(II)略(III) 略 解析:(1)∵AD=EF=AF=1∴∠OAF=60° 作FG⊥AB交AB于

24、一點G,則 ∵平面ABCD⊥平面ABEF ∴FG⊥面ABCD(3分) 所以 (2)∵平面ABCD⊥平面ABEF,CB⊥AB, 平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF,∵AF?平面ABEF,∴AF⊥CB, 又∵AB為圓O的直徑,∴AF⊥BF,∴AF⊥平面CBF.∵AF?面AFC,∴平面AFC⊥平面CBF; (3)取CF中點記作M,設(shè)DF的中點為N,連接AN,MN 則MN,又AO,則MNAO, 所以MNAO為平行四邊形,(10分) ∴OM∥AN,又AN?平面DAF,OM?平面DAF,∴OM∥平面DAF. (12分) 【思路點撥】根據(jù)幾何體的體積公式可求出體

25、積,再根據(jù)條件對幾何關(guān)系進行證明. 【題文】21.已知函數(shù)f(x)=alnx﹣ax﹣3(a∈R). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間; (Ⅱ)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍; (Ⅲ)求證:. 【知識點】函數(shù)的性質(zhì);導(dǎo)數(shù)與導(dǎo)數(shù)的運算 B1 B11 【答案】【解析】(I)略(II) (III)略 解析:(Ⅰ)(2分) 當(dāng)a>0時,f(x)的單調(diào)增區(qū)間為(0, 1],減區(qū)間為[1,+∞); 當(dāng)a<0時,f(x)的單調(diào)增區(qū)間為[1,+∞),減區(qū)間為(0,1];

26、 當(dāng)a=0時,f(x)不是單調(diào)函數(shù)(4分) (Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3 ∴, ∴g'(x)=3x2+(m+4)x﹣2(6分) ∵g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),且g′(0)=﹣2 ∴ 由題意知:對于任意的t∈[1,2],g′(t)<0恒成立, 所以有:,∴(10分) (Ⅲ)令a=﹣1此時f(x)=﹣lnx+x﹣3,所以f(1)=﹣2, 由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上單調(diào)遞增, ∴當(dāng)x∈(1,+∞)時f(x)>f(1),即﹣lnx+x﹣1>0, ∴l(xiāng)nx<x﹣1對一切x∈(1,+∞)成立,(12分) ∵n≥2,n∈N*,則有0<lnn<n﹣1, ∴ ∴ 【思路點撥】根據(jù)函數(shù)的導(dǎo)數(shù)可求出函數(shù)的單調(diào)區(qū)間,注意對字母a的討論,再利用導(dǎo)數(shù)值進行求解,求出m的范圍,最后對不等式利用導(dǎo)數(shù)進行證明.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!